
 1

Windows Standard

Serial Communications

Reference Library

(WSC_REF)

Version 7.0.0

September 2, 2019

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2019

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815 USA

Email : info@marshallsoft.com

Web : www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 4

 1.1 General Remarks Page 4

 1.2 Documentation Set Page 4

 1.3 Declaration Files Page 5

 1.4 Language Notes Page 5

2 WSC Functions Page 6

 2.1 SioBaud Page 6

 2.2 SioBrkSig Page 7

 2.3 SioByteToShort Page 8

 2.4 SioClose Page 9

 2.5 SioCRC16 Page 10

 2.6 SioCRC32 Page 11

 2.7 SioCTS Page 12

 2.8 SioDCD Page 13

 2.9 SioDebug Page 14

 2.10 SioDone Page 15

 2.11 SioDSR Page 16

 2.12 SioDTR Page 17

 2.13 SioErrorText Page 18

 2.14 SioEvent Page 19

 2.15 SioEventChar Page 20

 2.16 SioEventWait Page 21

 2.17 SioFlow Page 22

 2.18 SioGetc Page 23

 2.19 SioGetReg Page 24

 2.20 SioGets Page 25

 2.21 SioGetsC Page 26

 2.22 SioGetsQ Page 27

 2.23 SioHexView Page 28

 2.24 SioInfo Page 29

 2.25 SioKeyCode Page 30

 2.26 SioLRC Page 31

 2.27 SioMessage Page 32

 2.28 SioOpen Page 33

 2.29 SioParms Page 34

 2.30 SioPortInfo Page 35

 2.31 SioPutc Page 36

 2.32 SioPuts Page 37

 2.33 SioQuiet Page 38

 2.34 SioRead Page 39

 2.35 SioReset Page 40

 2.36 SioRI Page 41

 2.37 SioRTS Page 42

 2.38 SioRxClear Page 43

 2.39 SioRxQue Page 44

 2.40 SioRxWait Page 45

 2.41 SioSetInteger Page 46

 2.42 SioSetTimeouts Page 47

 2.43 SioShortToByte Page 48

 2.44 SioSleep Page 49

 2.45 SioStatus Page 50

 2.46 SioTimer Page 51

 2.47 SioTimeMark Page 52

 2.48 SioTxClear Page 53

 2.49 SioTxQue Page 54

 2.50 SioUnGetc Page 55

 2.51 SioWaitFor Page 56

 2.52 SioWinError Page 57

 3

3 Modem I/O Functions Page 58

 3.1 mioBreak Page 58

 3.2 mioDriver Page 59

 3.3 mioQuiet Page 60

 3.4 mioResult Page 61

 3.5 mioSendTo Page 62

 3.6 mioWaitFor Page 63

4 XYM Functions Page 64

 4.1 xyAbort Page 64

 4.2 xyAcquire Page 65

 4.3 xyDebug Page 66

 4.4 xyDriver Page 67

 4.5 xyGetFileName Page 68

 4.6 xyGetMessage Page 69

 4.7 xyGetParameter Page 70

 4.8 xyRelease Page 71

 4.9 xySetParameter Page 72

 4.10 xySetString Page 73

 4.11 xyStartRx Page 74

 4.12 xyStartTx Page 75

 5 Error Codes Page 76

 4

1 Introduction

The Windows Standard Serial Communications Library (WSC) is a serial communication component

DLL library that provides full control over a serial port. WSC uses the standard Windows API

(Application Programmer's Interface) to communicate with any device connected to a serial port.

A simple interface allows accessing data from a serial port using RS232 or multi-drop RS422 / RS485

serial ports. Windows Standard Serial Communications Library (WSC) also supports virtual ports

such as those created by Bluetooth and USB/serial converters.

The WSC Reference Manual (WSC_REF) applies to the Windows Standard Serial Communications

Library (WSC) for all supported languages. It contains details on each individual WSC function.

1.1 General Remarks

All functions return an integer code. Negative values are always errors. See "WSC Error Codes" in

Section 5.1. Non-negative (>=0) return codes are never errors.

Each function argument is marked as:

 (I) : 4-byte integer (Win32/Win64).

 (S) : 2-byte short integer (Win32/Win64).

 (L) : 4-byte integer (Win32/Win64).

 (P) : 4-byte pointer (Win32/Win64).

Refer to the declaration files (see Section 1.3 below) for the exact syntax of each WSC function. Also note

that the example programs, found in the /APPS directory, show exactly how WSC functions are called.

The latest version of our serial comm software and complete technical documentation can be found online

at http://www.marshallsoft.com/serial-communication-library.htm

1.2 Documentation Set

The complete set of documentation consists of four manuals. This is the third manual (WSC_REF) in the

set.

 WSC_4x Programmer’s Manual (WSC_4x.PDF)

 WSC User’s Manual (WSC_USR.PDF)

 WSC Reference Manual (WSC_REF.PDF)

 SERIAL User's Manual (SERIAL.PDF)

Each manual comes in Adobe PDF format.

The WSC_4x Programmer’s Manual is the language dependent manual and provides information needed to

compile your programs as well as the examples in the specified programming environment. The “x” in

WSC_4x Programmer’s Manual specifies the host language such as C for C/C++, VB for Visual Basic, etc.

The WSC User’s Manual (WSC_USR) discusses language independent serial communications

programming issues including modem control. It also contains purchase and license information. The

WSC Reference Manual (WSC_REF) contains details on each individual WSC function.

The Serial Communications Manual (SERIAL) contains background information on serial port hardware.

http://www.marshallsoft.com/serial-communication-library.htm
http://www.marshallsoft.com/wsc_usr.pdf
http://www.marshallsoft.com/wsc_ref.pdf
http://www.marshallsoft.com/serial.pdf

 5

1.3 Declaration Files

The exact syntax for calling WSC functions are specific to the host language (C/C++, Delphi, VB, etc.)

and are defined for each language in the “WSC declaration files”. Each WSC product comes with the

appropriate declaration file for the supported language. For example,

WSC4C C/C++,NET,C# WSC.H

WSC4VB Visual Basic WSC64.BAS and WSC32.BAS

 VB.NET WSC64.VB and WSC32.VB

 VBA (EXCEL,ACCESS,etc.) WSC64.BAS and WSC32.BAS

WSC4PB PowerBASIC WSC32.PBI

WSC4D Borland/Embarcadero Delphi WSC64.PAS and WSC32.PAS

WSC4CB Fujitsu COBOL WSC32.CBI

WSC4FP Visual FoxPro WSC32.FOX

WSC4DB Visual dBase WSC32.CC

WSC4XB Xbase++ WSC32.CH

1.4 Language Notes

All language versions of Windows Standard Serial Communications Library (WSC) include the

example program WSCVER. Refer to this program and the declaration file as defined in Section 1.3 above

to see how WSC functions are called.

The best way to see how a function is called is to find it used in one of the example programs. All WSC

functions are used in one or more examples.

1.4.1 C/C++/C#

None.

1.4.2 Delphi

(1) Functions defined in the Delphi Unit WSCW.PAS begin with "f" rather than "Sio".

(2) Replace "=" with ":=" in the examples.

1.4.3 Visual Basic (and VB.NET)

None.

1.4.4 PowerBASIC

for PowerBASIC (WSC32.PBI) begin with the character '%' symbol.

(2) The WSC keycode is defined in KEYCODE.PBI.

1.4.5 Visual FoxPro

All strings passed to WSC functions must be prefixed with the '@' character.

1.4.6 Visual dBase

None.

1.4.7 Xbase++

(1) Functions defined for Xbase++ begin with 'X'.

(2) All strings passed to WSC functions must be prefixed with the '@' character.

 6

2 WSC Functions

All parameters passed to WSC functions must be either an integer or a variable containing the address of a

character buffer.

2.1 SioBaud :: Sets the baud rate.

SYNTAX

SioBaud(Port, Baud)

 Port : (I) -1 or port selected.

 Baud : (I) Baud code or actual baud rate.

REMARKS

The SioBaud function sets the baud rate without resetting the port. It is used to change the baud rate after

calling SioOpen (or SioReset). SioBaud may be called with either the actual baud rate value or one of the

baud rate codes as follows:

 [VALUE] [RATE] [NAME]

 0 110 Baud110

 1 300 Baud300

 2 1200 Baud1200

 3 2400 Baud2400

 4 4800 Baud4800

 5 9600 Baud9600

 6 19200 Baud19200

 7 38400 Baud38400

 8 57600 Baud57600

 9 115200 Baud115200

Note that the baud rate does not have to be one listed above. When SioOpen (or SioReset) is called, the

baud rate is set to 19200 until changed by calling SioBaud. The 19200 default baud rate can be changed

by calling SioBaud with Port set to -1 before calling SioReset. Subsequent calls to SioOpen (or

SioReset) will then use the new default baud rate.

EXAMPLE

 Code = SioBaud(COM1, 28800)

RETURNS

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IE_BAUDRATE (Unsupported baud rate)

 7

2.2 SioBrkSig :: Asserts, cancels, or detects BREAK signal.

SYNTAX

SioBrkSig(Port, Cmd)

 Port : (I) Port selected.

 Cmd : (I) ASSERT, CANCEL, or DETECT.

REMARKS

The SioBrkSig function controls the BREAK bit in the line status register. The legal commands are:

 [NAME] : [FUNCTION]

 WSC_ASSERT_BREAK : to assert BREAK

 WSC_CANCEL_BREAK : to cancel BREAK

 WSC_DETECT_BREAK : to detect BREAK

WSC_ASSERT_BREAK, WSC_CANCEL_BREAK, and WSC_DETECT_BREAK are defined in the

language declaration file (see Section 1.3).

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_RANGE (Illegal command. Expected 'A', 'C', or 'D')

EXAMPLE

 Code = SioBrkSig(Port, WSC_ASSERT_BREAK)

 8

2.3 SioByteToShort :: Converts 8-bit Character Buffer to 16-bit Unicode ASCII

SYNTAX

SioByteToShort(Buffer)

 Buffer : (P) character buffer

REMARKS

The SioByteToShort function converts the (null terminated) character buffer 'Buffer' from 8-bit ASCII

characters to 16-bit Unicode ASCII characters.

The buffer must be null terminated (last character is a hex 00) and the buffer must be at least twice the size

(in bytes) of the character string (since 16-bit characters require twice the space as 8-bit characters).

This function is only necessary when working with 16-bit Unicode ASCII characters.

RETURNS

None.

EXAMPLE (C#)

 char[] UnsafeBuffer = new char[128];

 // get the registration string

 fixed (char* pBuffer = UnsafeBuffer)

 Code = SioGetReg(pBuffer, 50);

 if(Code>0)

 {// convert (null terminated) UnsafeBuffer[] to 16-bit chars (unicode)

 fixed (char* pBuffer = UnsafeBuffer)

 SioByteToShort(pBuffer);

 }

ALSO SEE

SioShortToByte

 9

2.4 SioClose :: Closes open port

SYNTAX

SioClose(Port)

 Port : (I) Port selected.

REMARKS

The SioClose function terminates further serial port processing, allowing other applications to use the port.

SioClose should always be the last function called before exiting an application.

If an application is running from within an integrated development environment (IDE) and the application

terminates without SioClose being called first, the IDE itself will prevent the port from being re-opened.

Terminating the IDE will free the port.

*** Use SioClose instead of SioDone ***

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset or SioOpen first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioClose(Port)

ALSO SEE

See SioOpen.

 10

2.5 SioCRC16 :: Computes 16-Bit CRC

SYNTAX

SioCRC16(Buffer, BufLen)

 Buffer : (P) Character buffer.

 BufLen : (I) Number of bytes in above buffer.

REMARKS

The SioCRC16 function computes the 16-bit CCITT CRC over the specified buffer.

The 16-bit CCITT CRC uses generating polynomial 1021 hex (8408 hex reversed)

This CRC is used for calculating the 16-bit YMODEM CRC value, among other uses.

EXAMPLE

C/C++ Example

int Code;

char *Buffer = "ABC";

Code = SioCRC16(Buffer, 3);

// answer is 0x3994

BASIC Example

Dim Buffer as String

Buffer = "ABC"

Code = SioCRC16(Buffer, 3)

// answer is 14740 (3994 hex)

ALSO SEE

SioCRC32

 11

2.6 SioCRC32 :: Computes 32-Bit CRC

SYNTAX

SioCRC32(Buffer, BufLen)

 Buffer : (P) Character buffer.

 BufLen : (I) Number of bytes in above buffer.

REMARKS

The SioCRC32 function computes the 32-bit CCITT CRC over the specified buffer.

The 32bit CCITT CRC uses generating polynomial 04C11DB7 hex (EDB88320 hex reversed)

This CRC is used for calculating the 32-bit ZMODEM CRC value, among other uses.

EXAMPLE

C/C++ Example

int Code;

char *Buffer = "ABC";

Code = SioCRC32(Buffer, 3);

// answer is 0xA3830348

BASIC Example

Dim Buffer as String

Buffer = "ABC"

Code = SioCRC32(Buffer, 3)

// answer is -1551695032 (A3830348 hex)

ALSO SEE

SioCRC16

 12

2.7 SioCTS :: Reads the Clear to Send (CTS) modem status bit.

SYNTAX

SioCTS(Port)

 Port : (I) Port selected.

REMARKS

The SioCTS function is used to detect if CTS (Clear To Send) is set (1) or clear (0).

The CTS line is used by some error correcting modems to implement hardware flow control. CTS is

dropped by the modem to signal the computer not to send data and is raised to signal the computer to

continue.

Refer to the SERIAL User's Manual (SERIAL.PDF) for a discussion about flow control.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = 0 (CTS is clear)

 Return > 0 (CTS is set)

EXAMPLE

 Code = SioCTS(Port)

ALSO SEE

 See SioFlow and SioRead.

http://www.marshhallsoft.com/serial.pdf

 13

2.8 SioDCD :: Reads the Data Carrier Detect (DCD) modem status bit

SYNTAX

SioDCD(Port)

 Port : (I) Port selected.

REMARKS

The SioDCD function is used to read the Data Carrier Detect (DCD) modem status bit. Also see SioStatus.

SioDCD is normally used after connecting to check that the carrier has not been dropped.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = 0 (DCD is clear)

 Return > 0 (DCD is set)

EXAMPLE

 Code = SioDCD(Port)

ALSO SEE

 See SioRead.

 14

2.9 SioDebug :: Sets and/or reads debug data.

SYNTAX

SioDebug(Parm)

 Parm : (I) Parameter.

REMARKS

Passing the character 'R' will result in the serial port driver RESETDEV ("reset device") command being

called when SioReset is called. The RESETDEV command is not required for the operation of the UART

and is not always implemented by some serial devices such as USB-Serial adapters.

Passing the character 'W' will toggle the operation of SioPuts between (1) "wait for completion" [default]

and (2) "immediate return" modes, as described in Section 2.9, “SioPuts Notes" of the WSC User's Manual

(WSC_USR.PDF).

RETURNS

See remarks above.

EXAMPLE

C++ Example

 Code = SioDebug('W');

BASIC Example

 Code = SioDebug(ASC("W"))

ALSO SEE

None.

http://www.marshhallsoft.com/wsc_usr.pdf

 15

2.10 SioDone :: Terminates further serial processing.

SYNTAX

SioDone(Port)

 Port : (I) Port selected.

REMARKS

The SioDone function terminates further serial port processing, allowing other applications to use the port.

SioDone should always be the last function called before exiting an application.

If an application is running from within an integrated development environment (IDE) and the application

terminates without SioDone being called first, the IDE itself will prevent the port from being re-opened.

Terminating the IDE will free the port.

*** SioDone is being deprecated. Use SioClose instead. ***

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioDone(Port)

ALSO SEE

See SioClose, SioReset, SioOpen.

 16

2.11 SioDSR :: Reads the Data Set Ready (DSR) modem status bit.

SYNTAX

SioDSR(Port)

 Port : (I) Port selected.

REMARKS

The SioDSR function is used to detect if DSR (Data Set Ready) is set (1) or clear (0). Some Windows

Modems normally set DSR as soon as they are powered up.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = 0 (DSR is clear)

 Return > 0 (DSR is set)

EXAMPLE

 Code = SioDSR(Port)

ALSO SEE

 See SioRead.

 17

2.12 SioDTR :: Set, clear, or read Data Terminal Ready (DTR).

SYNTAX

SioDTR(Port, Cmd)

 Port : (I) Port selected.

 Cmd : (I) DTR command (see below).

REMARKS

The SioDTR function controls the Data Terminal Ready (DTR) bit in the modem control register. DTR

should always be set when communicating with a modem.

 [NAME] : [FUNCTION]

 WSC_SET_LINE : to set DTR (ON)

 WSC_CLEAR_LINE : to clear DTR (OFF)

 WSC_READ_LINE : to read DTR

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_RANGE (Not one of 'S', 'C', or 'R')

 Return = 0 (DTR is clear [READ_LINE Command])

 Return >0 (DTR is set [READ_LINE Command])

EXAMPLE

 Code = SioDTR(Port, WSC_SET_LINE)

ALSO SEE

SioRead.

 18

2.13 SioErrorText :: Return last error code & message text.

SYNTAX

SioErrorText(ErrCode, Buffer, Size)

 ErrCode : (I) Error code (always a negative number)

 Buffer : (P) Pointer to messages buffer.

 Size : (I) Size of buffer.

REMARKS

The SioErrorText copies the error text corresponding to the passed error code ‘ErrCode’ to ‘Buffer’.

EXAMPLE

C/C++ Example

 char Buffer[128]

 Code = SioErrorText(ErrCode, (char *)Buffer, 128)

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioErrorText(ErrCode, Buffer, 128)

RETURNS

The length of the error text copied into ‘Buffer’..

 19

2.14 SioEvent :: Efficiently waits for serial event.

SYNTAX

SioEvent(Port, Mask)

 Port : (I) Port selected.

 Mask : (I) Event Mask (see below).

REMARKS

The SioEvent function (WIN32/WIN64 only) waits (blocks) until the condition specified in 'Mask' is

satisfied. SioEvent returns (unblocks) only for events that occur after it is called. Multiple conditions can

be OR'ed together. See example below. The event masks are:

 [NAME] : [FUNCTION]

 EV_RXCHAR : A character was received.

 EV_BREAK : A break signal was received.

 EV_CTS : The CTS line changed states.

 EV_DSR : The DSR line changed states.

 EV_ERR : An error was detected.

 EV_RLSD : The DCD line has changed states.

 EV_RING : The RI line has been set.

 EV_TXEMPTY : The TX queue has become empty.

Overlapped I/O must be enabled in order for SioEvent to block

Call the SioEventWait function if an event timeout is desired.

RETURNS

SioEvent does not return until the specified event occurs. For this reason, it is best used inside of a thread.

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IO_ERROR (An event error has occurred)

 Return = WSC_IO_COMPLETE (success - event has occurred)

 Return = WSC_IO_PENDING (fails - event has not occurred)

WSC_IO_PENDING will be returned by SioEvent if timeout has occurred.

EXAMPLE

C/C++ Example

 // wait until CTS or DSR changes states.

 Code = SioEvent(Port, EV_CTS|EV_DSR)

BASIC Example

// ' wait until CTS or DSR changes states.

 Code = SioEvent(Port, EV_CTS OR EV_DSR)

ALSO SEE

SioEventChar, SioEventWait, and SioMessage.

 20

2.15 SioEventChar :: Efficiently waits for a serial character.

SYNTAX

SioEventChar(Port, EvtChar, Timeout)

 Port : (I) Port selected.

 EvtChar : (I) Event character.

 Timeout : (I) Timeout (milliseconds).

REMARKS

The SioEventChar function (WIN32/WIN64 only) waits (blocks) until the specified character is seen in

the serial input stream or timeout occurs. SioEventChar returns (unblocks) only when the specified

character is received after it is called.

Overlapped I/O must be enabled in order for SioEventChar to block

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IO_ERROR (An event error has occurred)

 Return = WSC_IO_COMPLETE (success - event has occurred)

 Return = WSC_IO_PENDING (fails - event has not occurred)

WSC_IO_PENDING will be returned by SioEventChar if timeout has occurred.

EXAMPLE

C/C++ Example

 // wait (up to 1 second) until a carriage return is seen.

 Code = SioEventChar(Port, '\r', 1000)

BASIC Example

 ' wait (up to 1 second) until a carriage return [Chr(13)] is seen.

 Code = SioEventChar(Port, 13, 1000)

ALSO SEE

SioEvent and SioEventWait.

 21

2.16 SioEventWait :: Efficiently waits for a serial event.

SYNTAX

SioEventWait(Port, Mask, Timeout)

 Port : (I) Port selected.

 Mask : (I) Event Mask (see below).

 Timeout : (I) Timeout (milliseconds).

REMARKS

The SioEventWait function (WIN32/WIN64 only) waits (blocks) until the condition specified in 'Mask' is

satisfied or the timeout is reached. SioEventWait returns (unblocks) only for events that occur after it is

called unless the specified timeout period is reached. Multiple conditions can be OR'ed together. See the

example below. The event masks can be found in the description of SioEvent entry above.

Overlapped I/O must be enabled in order for SioEventWait to block

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IO_ERROR (An event error has occurred)

 Return = WSC_IO_COMPLETE (success - event has occurred)

 Return = WSC_IO_PENDING (fails - event has not occurred)

WSC_IO_PENDING will be returned by SioEventWait if timeout has occurred.

EXAMPLE

C/C++ Example

 // Wait (up to 1.5 seconds) for incoming serial data.

 Code = SioEventWait(Port, EV_RXCHAR, 1500)

BASIC Example

 ' Wait (up to 1.5 seconds) for incoming serial data.

 Code = SioEventWait(Port, EV_RXCHAR, 1500)

ALSO SEE

SioEvent and SioEventChar.

 22

2.17 SioFlow :: Sets flow control protocol.

SYNTAX

SioFlow(Port, Cmd)

 Port : (I) Port selected.

 Cmd : (I) Class of flow control (see below).

REMARKS

The SioFlow function is used to enable or disable hardware flow control. Hardware flow control uses RTS

and CTS to control data flow between the modem and the computer. To enable flow control, call SioFlow

with 'Cmd' set to:

 [NAME] : [FUNCTION]

 WSC_HARDWARE_FLOW_CONTROL : Hardware (RTS/CTS) flow control.

 WSC_SOFTWARE_FLOW_CONTROL : Software (XON/XOFF) flow control.

 WSC_NO_FLOW_CONTROL : No flow control [default].

In order for flow control to work correctly, your serial device must also be configured to work with the

same class of flow control (hardware or software). If using hardware flow control, the computer to serial

device cable must have RTS and CTS wired straight through. If hardware flow control is enabled, the RTS

line should not be modified by calling SioRTS.

RETURNS

 Return = WSC_RANGE (Cannot recognize command)

 Return > 0 (Flow control enabled)

 Return = 0 (Flow control disabled)

EXAMPLE

 Code = SioFlow(Port, WSC_HARDWARE_FLOW_CONTROL)

ALSO SEE

SioPutc and SioSetTimeouts.

 23

2.18 SioGetc :: Reads the next character from the serial line.

SYNTAX

SioGetc(Port)

 Port : (I) Port selected.

REMARKS

The SioGetc function reads the next byte from the receive queue of the selected serial port.

WSC_NO_DATA (-100) is returned if no byte is available.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_NO_DATA (no data available)

 Return >= 0 (character read)

EXAMPLE

 Code = SioGetc(Port)

ALSO SEE

SioUnGetc and SioGets.

 24

2.19 SioGetReg:: Get registration string

SYNTAX

SioGetRef(Buffer, BufLen)

 Buffer : (P) Buffer of bytes

 BufLen : (I) Buffer length

REMARKS

The SioGetReg function copies the customer’s registration string to the buffer.

RETURNS

 Number of bytes copied.

EXAMPLE

 C/C++ Example

 char Buffer[128];

 Code = SioGetReg((char *)Buffer, 128)

 BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioGetReg(Buffer, 128)

ALSO SEE

(none)

 25

2.20 SioGets :: Reads the next byte buffer from the serial line.

SYNTAX

SioGets(Port, String, Cnt)

 Port : (I) Port selected.

 String : (P) Pointer to receive buffer.

 Cnt : (I) Number of bytes to read.

REMARKS

The SioGets function reads the smaller of the number of bytes wanted (BufLen) and the number of bytes

in the receive buffer. A zero is returned if no bytes are read.

Note that even if the data is being sent in one operation by the other side, it may not necessarily arrive all

in a single packet.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return >= 0 (Number of characters actually read)

EXAMPLE

C/C++ Example

 char Buffer[128];

 Code = SioGets(Port, (char *)Buffer, 128)

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioGets(Port, Buffer, 128)

ALSO SEE

SioGetsC.

 26

2.21 SioGetsC :: Reads the next line.

SYNTAX

SioGetsC(Port, Buffer, BufLen, Timeout, StopChr)

 Port : (I) Port selected.

 Buffer : (P) Pointer to receive buffer.

 BufLen : (I) Size of above buffer.

 Timeout: (I) Maximum time (ms) to wait before returning.

 StopChr: (I) Stop (EOL) character.

REMARKS

The SioGetsC function reads all incoming data up until (and including) the stop character ‘StopChr’.

SioGetsC will return once the stop character is received, or ‘BufLen’ characters are received, or the

timeout period is reached.

An entire line was read if the last character in the buffer was the stop character.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return >= 0 (Number of characters actually read)

EXAMPLE

C/C++ Example

 char Buffer[128];

 Code = SioGets(Port, (char *)Buffer, 128, 2000, '\r');

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioGets(Port, Buffer, 128, 2000, 13)

ALSO SEE

SioGets.

 27

2.22 SioGetsQ :: Read until no data for 'QuietTime'

SYNTAX

SioGetsQ(Port, QuietTime, Buffer, BufLen)

 Port : (I) Port selected.

 QuietTime: (I) QWuiet time (ms).

 Buffer : (P) Pointer to receive buffer.

 BufLen : (I) Size of above buffer.

REMARKS

The SioGetsQ function reads all incoming data up until ‘QuietTime’ milliseconds passes without any

additional incoming data. This function is designed for reading from serial devices that do not have a

known termination character.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return >= 0 (Number of characters actually read)

EXAMPLE

C/C++ Example

 char Buffer[128];

 Code = SioGetsQ(Port, 100, (char *)Buffer, 128

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioGets(Port, 100, Buffer, 128)

ALSO SEE

SioGets, SioGetc

 28

2.23 SioHexView :: Constructs Hexadecimal String

SYNTAX

SioHexView(Binary, BinLen, Buffer, BufLen);

 Binary : (I) Array of binary bytes.

 BinLen : (I) Number of bytes in 'Binary' array above.

 Buffer : (I) Buffer into which hexadecimal bytes are written.

 BufLen : (I) Size of 'Buffer'.

REMARKS

The SioHexView function constructs a string of hexadecimal characters corresponding to the bytes in the

'Binary' array. For example, if 'Binary' contains the two bytes 01 5A, then the SioHexView will construct

the output buffer to be the five byte string "01 5A".

RETURNS

Returns the number of characters written to 'Buffer'.

EXAMPLE

 char Binary[] = {0x01, 0x5A};

 char Buffer[6];

 Code = SioHexView((char *)Binary, 2, (char *)Buffer, 6);

 29

2.24 SioInfo :: Returns WSC library version information.

SYNTAX

SioInfo(Cmd)

 Cmd : (I) Command (See below)

REMARKS

The SioInfo function returns an integer code corresponding to the Cmd as follows.

 [NAME] : [FUNCTION]

 WSC_GET_VERSION : Library version number [3 hex digits].

 WSC_GET_BUILD : Library build number.

SioInfo(WSC_GET_VERSION) will return the 3 digit version number embedded in WSC64.DLL and in

WSC32.DLL. The 3 digit version number is formatted as the rightmost 3 nibbles (4 bits per nibble) of the

return value. SioInfo(WSC_GET_BUILD) will return the version build number.

Refer to the WSCVER program for an example.

RETURNS

See remarks above.

Return = -1 (Cannot recognize command)

EXAMPLE

 Code = SioInfo(WSC_GET_VERSION)

 30

2.25 SioKeyCode :: Pass keycode to WSC DLL

SYNTAX

SioKeyCode(KeyCode)

 KeyCode : (L) Keycode value (0 or 8 to 10 digit number)

REMARKS

The SioKeyCode function must be the first WSC call made.

When WSC is purchased, you will receive a 'keycode' (an 8 to 10 digit number) that matches the 'keycode'

within the registered version of the DLL. For the evaluation (shareware) version, the keycode is 0. See

file KEYCODE.

EXAMPLE

All example programs call SioKeyCode

 Code = SioKeyCode(WSC_KEY_CODE)

RETURNS

Return >= 0 No error.

Return = WSC_KEYCODE (wrong keycode)

 31

2.26 SioLRC:: Computes the longitudinal check byte

SYNTAX

SioGetc(Port)

 Buffer : (P) Buffer of bytes

 BufLen : (I) Buffer length

REMARKS

The SioLRC function computes the longitudinal check (parity) byte of the specified buffer as per ISO

1155.

RETURNS

 LRC of buffer

EXAMPLE

 Code = SioGetc(Port)

ALSO SEE

SioUnGetc and SioGets.

 32

2.27 SioMessage :: Send windows message when event occurs.

SYNTAX

SioMessage(Port, Handle, Message, Mask)

 Port : (I) Port selected.

 Handle : (S) Window handle (HWND).

 Message: (I) Message (Usually WM_USER).

 Mask : (L) Event mask (see SioEvent).

REMARKS

The SioMessage function will post the message 'Message' to the window handle 'Handle' when event

'Mask' occurs. SioMessage does not block.

Call SioMessage(Port, 0, 0, 0) in order to cancel a previous event.

Refer to SioEvent for a list of mask values.

RETURNS

See remarks above.

EXAMPLE

 Code = SioMessage(Port, hWnd, WM_USER, EV_RXCHAR)

ALSO SEE

SioEvent, SioEventChar, and SioEventWait

 33

2.28 SioOpen :: Open port with default buffer sizes

SYNTAX

SioReset(Port)

 Port : (I) Port selected (or -1: see below).

REMARKS

The SioOpen function opens the selected serial port using the default RX and TX buffer sizes of 1280

bytes. Thus, calling SioOpen(Port) is equivalent to calling SioReset(Port, 1280, 1280).

SioOpen (or SioReset) should be called before making any other calls to WSC functions.

SioOpen uses the parity, stop bits, and word length value previously set if SioParms was called otherwise

the default values (19200, no parity, 8 data, 1 stop) are used.

RETURNS

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IE_OPEN (Already open)

 Return = WSC_IE_MEMORY (Cannot allocate memory)

 Return = WSC_IE_HARDWARE (Hardware error)

EXAMPLE

 Code = SioOpen(Port)

ALSO SEE

SioReset, SioBaud, SioParms, SioCloe, and SioDone.

 34

2.29 SioParms :: Sets parity, stop bits, and word length.

SYNTAX

SioParms(Port, Parity, StopBits, DataBits)

 Port : (I) -1 or port selected.

 Parity : (I) Parity code.

 StopBits : (I) Stop bits code.

 DataBits : (I) Word length code.

REMARKS

The SioParms function sets the parity, stop bits, and word length values.

SioParms can be called either before or after calling SioReset. Call SioParms with Port set to -1 before calling

SioReset to make the passed parameters the default. Use the constant values defined in the WSC declaration file

(see Section 1.3) to minimize the chance of passing an incorrect parameter value.

 [PARITY] [STOPBITS] [DATABITS]

 NoParity OneStopBit WordLength7

 OddParity One5StopBits WordLength8

 EvenParity TwoStopBits --

 SpaceParity -- --

 MarkParity -- --

RETURNS

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IE_BYTESIZE (Word length not supported)

 Return = WSC_RANGE (Parameter out of range)

EXAMPLE

 Code = SioParms(Port, WSC_NoParity, WSC_OneStopBit, WSC_WordLength8)

ALSO SEE

SioReset.

 35

2.30 SioPortInfo :: Returns Specified Port Info.

SYNTAX

SioPortInfo (Port, Param)

 Port : (I) Port selected.

 Param : (I) Parameter.

REMARKS

The SioPortInfo returns the specified port parameter.

When calling SioPortInfo with parameter WSC_PORT_BAUD, the baud rate is

returned in bits per second.

When calling SioPortInfo with parameter WSC_PORT_CPS, the theoretical maximum

value of CPS (characters per second) is returned, which take into account data

bits, stop bits, and parity bits, as well as bit time overhead.

[PARAM] [RETURNS]

WSC_PORT_BAUD Port baud rate in bits per second.

WSC_PORT_CPS Port (theoretical) CPS (characters per second)

RETURNS

 Returns the specified port parameter as described above.

EXAMPLE

 Code = SioPortInfo(Port, WSC_PORT_CPS)

ALSO SEE

SioReset.

 36

2.31 SioPutc :: Transmit a character over a serial line.

SYNTAX

SioPutc(Port, Ch)

 Port : (I) Port selected.

 Ch : (I) Character to send.

REMARKS

The SioPutc function copies the character to the transmit queue for subsequent transmission by the UART.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = 1 (No error)

EXAMPLE

C/C++ Example

 Code = SioPutc(Port, 'A')

BASIC Example

 Code = SioPutc(Port, ASC("A"))

ALSO SEE

SioGetc, SioFlow, and SioSetTimeouts.

 37

2.32 SioPuts :: Transmits a byte buffer over a serial line.

SYNTAX

SioPuts(Port, String, Count)

 Port : (I) Port selected.

 String : (P) Pointer to string of bytes to transmit.

 Count : (I) Number of bytes to transmit.

REMARKS

The SioPuts function copies 'Count' bytes from 'String' to the transmit queue for transmission. The 'String'

can contain any ASCII or binary values.

The SioPuts function can operate in two ways: "wait for completion" and "immediate return", as described in

Section 2.9, “SioPuts Notes”, in the WSC User's Manual (WSC_USR.PDF)

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return >= 0 (The number of bytes accepted for transmission)

EXAMPLE

C/C++ Example

 char Buffer[128];

 Code = SioPuts(Port, (char *)Buffer, 128)

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioPuts(Port, Buffer, 128)

ALSO SEE

SioGetc, SioFlow, SioSetTimeouts.

http://www.marshhallsoft.com/wsc_usr.pdf

 38

2.33 SioQuiet :: Returns after specified period of quiet.

SYNTAX

SioQuiet(Port, Quite, Timeout)

 Port : (I) Port selected.

 Quiet : (I) Quiet time period (milliseconds).

 Timeout : (I) Timeout period (milliseconds).

REMARKS

The SioQuiet function will not return until there is 'Quiet' continuous milliseconds in which there is no

incoming bytes or the timeout period is exceeded. Any incoming data is removed (deleted) while SioQuiet

is running.

The primary purpose of SioQuiet is for changing modem states. See example below.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_TIMEOUT (Timed out)

 Return = 0 (Quiet time seen)

EXAMPLE

C/C++ Example

 char *Break = "+++";

 if(SioQuiet(Port, 1000, 60000) == WSC_TIMEOUT)

 {printf("Failure: Timed-out\n"};

 return;

 }

 Code = SioPuts(Port, Break, 3);

 SioSleep(1000);

BASIC Example

 Dim Break As String

 Break = "+++;

 If SioQuiet(Port, 1000, 60000) = WSC_TIMEOUT Then

 PRINT "Failure: Timed-out"

 EXIT

 End If

 Code = SioPuts(Port, Break, 3)

 SioSleep(1000);

ALSO SEE

 39

2.34 SioRead :: Reads any UART register.

SYNTAX

SioRead(Port, Reg)

 Port : (I) Port selected.

 Reg : (I) UART register (0 to 7).

REMARKS

SioRead is ONLY for Win16 applications running under Windows 95 and 98. Win16 is no longer

supported in WSC.

 40

2.35 SioReset :: Initialize a serial port for processing.

SYNTAX

SioReset(Port, RxQueSize, TxQueSize)

 Port : (I) Port selected (or -1: see below).

 RxQueSize : (I) Receive queue size.

 TxQueSize : (I) Transmit queue size.

REMARKS

The SioReset function initializes (opens) the selected serial port. SioReset should be called before making

any other calls to WSC except for setting default behavior (port=-1). SioReset uses the parity, stop bits,

and word length value previously set if SioParms was called otherwise the default values (19200, no

parity, 8 data, 1 stop) are used.

SioReset can be called with Port set to -1 in order to specify the behavior of DTR and RTS at port

initialization:

 SioReset(-1, DTR_Default, RTS_Default)

DTR will be set at port initialization if DTR_Default is 1, else DTR will be cleared. This is also the case

for RTS_Default.

RETURNS

 Return = WSC_IE_BADID (No such port)

 Return = WSC_IE_OPEN (Already open)

 Return = WSC_IE_MEMORY (Cannot allocate memory)

 Return = WSC_IE_HARDWARE (Hardware error)

EXAMPLE

 Code = SioReset(Port, 1024, 1024)

ALSO SEE

SioOpen, SioBaud, SioParms, and SioDone.

 41

2.36 SioRI :: Reads the Ring Indicator (RI) modem status bit.

SYNTAX

SioRI(Port)

 Port : (I) Port selected.

REMARKS

The SioRI function is used to read the Ring Indicator (RI) modem status bit. It is recommended that

incoming rings be detected by looking for the text "RING" in the input stream rather than the RI signal

since some modems do not set the RI reliably.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = 0 (RI is clear)

 Return = >0 (RI is set - RING has occurred)

EXAMPLE

 Code = SioRI(Port)

ALSO SEE

SioRead.

 42

2.37 SioRTS :: Sets, clears, or reads the Request to Send (RTS).

SYNTAX

SioRTS(Port, Cmd)

 Port : (I) Port selected.

 Cmd : (I) RTS command (SET, CLEAR, or READ).

REMARKS

The SioRTS function controls the Request to Send (RTS bit in the modem control register).

The RTS line is used by some error correcting modems to implement hardware flow control. RTS is

dropped by the computer to signal the modem not to send data and is raised to signal the modem to

continue. RTS should be set when communicating with a modem unless flow control is being used.

Refer to the SERIAL User's Manual (SERIAL.PDF or http://www.marshallsoft.com/serial.pdf) for a

discussion of flow control. Commands (defined in WSC declaration file [Section 1.3]) are:

 [NAME] : [FUNCTION]

 WSC_SET_LINE : set RTS (ON)

 WSC_CLEAR_LINE : clear RTS (OFF)

 WSC_READ_LINE : read RTS

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_RANGE (Command is not one of 'S', 'C', or 'R')

 Return = 0 (RTS is clear ['R' command])

 Return > 0 (RTS is set ['R' command])

EXAMPLE

 Code = SioRTS(Port, WSC_CLEAR_LINE)

ALSO SEE

SioFlow and SioDTR.

http://www.marshallsoft.com/serial.pdf

 43

2.38 SioRxClear :: Clears the receive buffer.

SYNTAX

SioRxClear(Port)

 Port : (I) Port selected.

REMARKS

The SioRxClear function will delete any characters in the receive buffer (not the UART) for the specified

port. After execution, the receive buffer will be empty.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioRxClear(Port)

ALSO SEE

SioRxQue.

 44

2.39 SioRxQue :: Returns the number of bytes in the receive queue.

SYNTAX

SioRxQue(Port)

 Port : (I) Port selected.

REMARKS

The SioRxQue function will return the number of bytes in the receive queue (not the UART) at the time

of the call.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioRxQue(Port)

ALSO SEE

 See SioTxQue

 45

2.40 SioRxWait :: Waits For Specified Number of Incoming Bytes

SYNTAX

SioRxWait(Port, BytesWanted, Timeout)

 Port : (I) Port selected.

 BytesWanted : (I) Number of bytes wanted before returning.

 Timeout : (I) Number of milliseconds before timing out.

REMARKS

The SioRxWait function will return once 'BytesWanted' bytes are available to read, or if the timeout

period is exceeded.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_TIMEOUT (Timed out)

EXAMPLE

 Code = SioRxWait(Port, 100, 3500)

ALSO SEE

 See SioRxQue

 46

2.41 SioSetInteger :: Sets integer parameter for serial processing.

SYNTAX

SioSetInteger(Port, ParamName, ParamValue)

Port : (I) Port selected.

ParmName : (I) Parameter name (integer code)

ParmValue : (L) Parameter value

REMARKS

The parameter values defined are as follows:

 [NAME] : [FUNCTION]

 WSC_WAIT_ON_PUTS : Complete I/O before returning ['W']

 WSC_SIGNAL : Signal thread blocking on SioEvent ['S']

 WSC_OVERLAPPED : Enable overlapped I/O ['O']

WSC_WAIT_ON_PUTS is used to direct SioPuts to return immediately (before the I/O is complete) if

ParamValue is TRUE (not 0). The default is 0 (FALSE), which means that SioPuts will not return until the

I/O is completed.

WSC_SIGNAL is used to signal WSC to release the block created when SioEvent was called.

WSC_OVERLAPPED is used to enable all overlapped I/O (pass ParmValue = 1). Overlapped I/O was

introduced beginning with Windows 98. Win95 does not support overlapped I/O.

By default, WSC32 will not use overlapped I/O since not all USB-RS232 converter drivers implement

overlapped I/O.

RETURNS

The parameter value is returned if the parameter name is recognized, otherwise -1 is returned.

EXAMPLE

 SioSetInteger(Port, WSC_WAIT_ON_PUTS, 1)

 SioSetInteger(Port, WSC_SIGNAL, 1)

 47

2.42 SioSetTimeouts :: Sets Transmit and Receive Timeout Constants.

SYNTAX

SioSetTimeouts(Port,ReadInter,ReadMult,ReadCons,WriteMult,WriteCons)

Port : (I) port selected

ReadInter : (I) read interval t/o

ReadMult : (I) read t/o multiplier

ReadCons : (I) read t/o constant

WriteMult : (I) write t/o multiplier

WriteCons : (I) write t/o constant

REMARKS

Sets the transmit (SioPutc/SioPuts) & receive (SioGetc/SioGets) operation timeouts.

If the value returned by SioPutc is 0, then a timeout has occurred. If the value returned by SioPuts is less

than the number of bytes passed as the last argument to SioPuts, then a timeout has occurred.

WSC_READ_INTERVAL_TIMEOUT (ReadInter)

Sets the maximum period of time (in milliseconds) allowed between two sequential bytes being read from

the serial port before the receive operation terminates.

If set to MAXDWORD and the other two above READ timeouts are set to zero, then serial receive calls

return immediately without waiting.

WSC_READ_TIMEOUT_MULTIPLIER (ReadMult)

Sets the multiplier (in milliseconds) used to calculate the overall timeout of serial receive operations. This

timeout is given by:

NbrBytes * ReadTimeoutMultiplier + ReadTimeoutConstant (NbrBytes = # bytes requested)

WSC_READ_TIMEOUT_CONSTANT (ReadConst)

Sets the constant (in milliseconds) used to calculate the overall timeout of serial receive operations. This

timeout is given by:

NbrBytes * ReadTimeoutMultiplier + ReadTimeoutConstant (NbrBytes = # bytes requested

WSC_WRITE_TIMEOUT_MULTIPLIER (WriteMult)

Sets the multiplier (in milliseconds) used to calculate the overall timeout of serial transmit operations. This

timeout is given by:

NbrBytes * WriteTimeoutMultiplier + WriteTimeoutConstant (NbrBytes = # bytes requested)

WSC_WRITE_TIMEOUT_CONSTANT (WriteCons)

Sets the constant (in milliseconds) used to calculate the overall timeout of serial transmit operations. This

timeout is given by:

NbrBytes * WriteTimeoutMultiplier + WriteTimeoutConstant (NbrBytes = # bytes requested)

RETURNS

 Return = WSC_WIN32ERR (cannot set timeouts)

EXAMPLE

 SioSetTimeouts(Port,(DWORD)-1,(DWORD)0,(DWORD)0,(DWORD)1,(DWORD)2000);

 48

2.43 SioShortToByte :: Converts 16-bit Unicode ASCII character buffer to 8-bit

SYNTAX

SioShortToByte(Buffer)

 Buffer : (P) character buffer

REMARKS

The SioShortToByte function converts the (null terminated) character buffer 'Buffer' from 16-bit Unicode

ASCII characters to 8-bit ASCII characters.

The buffer must be null terminated (last character is a hex 00).

This function is only necessary when working with 16-bit Unicode ASCII characters.

RETURNS

None.

EXAMPLE (C#)

 NameString = "MyFile.zip\0"

 char[] NameBuffer = NameString.ToCharArray();

 // convert (null terminated) 16-unicode buffer to 8-bit

 fixed (char* pNameBuffer = NameBuffer)

 SioShortToByte(pNameBuffer);

ALSO SEE

SioByteToShort

 49

2.44 SioSleep :: Sleeps Specified Time.

SYNTAX

SioSleep(Milliseconds)

 Milliseconds : (I) Number of milliseconds to sleep.

REMARKS

The SioSleep function sleeps for the indicated number of milliseconds. 'Milliseconds' must be positive.

This function is included in WSC because it is not available in all computer languages.

EXAMPLE (C/C++)

 // sleep 1 second

 Tics = SioSleep(1000);

EXAMPLE (VB)

 ' sleep 1 second

 Tics = SioSleep(1000)

RETURNS

1 is always returned.

 50

2.45 SioStatus :: Returns the serial port status.

SYNTAX

SioStatus(Port, Mask)

 Port : (I) Port selected.

 Mask : (I) Error mask.

REMARKS

The SioStatus function returns the serial port error status corresponding to the mask argument.

 [MASK NAME] : [FUNCTION]

 WSC_RXOVER : The receive queue overflowed.

 WSC_OVERRUN : An incoming byte was overwritten.

 WSC_PARITY : A parity error was detected (incoming byte)

 WSC_FRAME : A framing error was detected (incoming byte)

 WSC_BREAK : A break signal was detected.

 WSC_TXFULL : The transmit queue is full.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioStatus(Port, WSC_FRAME)

ALSO SEE

SioRead.

 51

2.46 SioTimer :: Returns the current time in milliseconds.

SYNTAX

SioTimer()

REMARKS

The SioTimer returns the system time in milliseconds. SioTimer calls the Windows API function

GetCurrentTime.

This function is provided as a convenience since GetCurrentTime can not be called directly from programs

written in some computer languages.

RETURNS

The system time in milliseconds.

EXAMPLE

 TimeNow = SioTimer()

 52

2.47 SioTimeMark :: Returns the current time in milliseconds .

SYNTAX

SioTimeMark(DWORD TimeMask)

 TimeMask : (I) Mask to "AND" with system time.

REMARKS

The SioTimeMark returns the system time (modulo the TimeMask) in milliseconds. SioTimeMark calls

the Windows API function GetCurrentTime.

This function is provided as a convenience since GetCurrentTime can not be called directly from programs

written in some computer languages.

RETURNS

The system time in milliseconds after applying the mask.

EXAMPLE

 // get last 8 bits of system time

 TimeMark = SioTimeMark(255)

 53

2.48 SioTxClear :: Clears the transmit buffer.

SYNTAX

SioTxClear(Port)

 Port : (I) Port selected.

REMARKS

The SioTxClear function will delete any characters in the transmit buffer (not the UART) for the specified

port.

Once this function is called, any character in the transmit buffer (put there by SioPutc or SioPuts) will be

lost and therefore not transmitted.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioTxClear(Port)

ALSO SEE

SioTxQue.

 54

2.49 SioTxQue :: Returns the number of bytes in the transmit queue.

SYNTAX

SioTxQue(Port)

 Port : (I) Port selected.

REMARKS

The SioTxQue function will return the number of characters in the transmit queue (not the UART) at the

time of the call.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioTxQue(Port)

ALSO SEE

SioRxQue.

 55

2.50 SioUnGetc :: "Ungets" the last character read with SioGetc().

SYNTAX

SioUnGetc(Port, Ch)

 Port : (I) Port selected.

 Ch : (I) Character to unget.

REMARKS

The SioUnGetc function returns ("pushes") the character back into the serial input buffer. The character

pushed will be the next character returned by SioGetc. Only one character can be pushed back. This

function works just like the "ungetc" function in the C language.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

EXAMPLE

 Code = SioUnGetc(Port)

ALSO SEE

SioReset.

 56

2.51 SioWaitFor :: Waits for the next character from the serial line.

SYNTAX

SioWaitFor(Port, Timeout)

 Port : (I) Port selected.

 Timeout : (I) Timeout (milliseconds).

REMARKS

The SioWaitFor function waits up to 'Timeout' milliseconds for the next incoming byte from the selected

serial port. WSC_TIMEOUT is returned if no byte is available within the timeout period.

RETURNS

 Return = WSC_IE_NOPEN (Port not opened. Call SioOpen or SioReset first)

 Return = WSC_IE_BADID (No such port)

 Return = WSC_TIMEOUT (timed out waiting for next incoming byte)

 Return >= 0 (character read)

EXAMPLE

 Code = SioWaitFor(Port, 5000)

ALSO SEE

SioGetc and SioGets.

 57

2.52 SioWinError :: Return last Win32/Win64 error code & message text.

SYNTAX

SioWinError(Buffer, Size)

 Buffer : (P) Pointer to messages buffer.

 Size : (I) Size of buffer.

REMARKS

The SioWinError is a Win32/Win64 ONLY function that returns the last Win32/Win64 error code. If

'Buffer' is not NULL, it will also copy the corresponding text message into 'Buffer' of maximum size 'Size'

EXAMPLE

C/C++ Example

 char Buffer[128]

 Code = SioWinError((char *)Buffer, 128)

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = SioWinError(Buffer, 128)

RETURNS

The Win32/Win64 numeric error code.

 58

3 Modem I/O Functions

3.1 mioBreak :: Aborts the Modem I/O state driver.

SYNTAX

mioBreak(Port)

 Port : (I) Port selected.

REMARKS

The mioBreak function forces the MIO driver to the IDLE state, abandoning any work in progress (if

any). It is used to abort mioSendTo, mioQuiet, and mioWaitFor functions.

RETURNS

Return = MIO_IDLE.

EXAMPLE

 Code = mioBreak(Port)

 59

3.2 mioDriver :: Modem I/O state driver.

SYNTAX

mioDriver(Port)

 Port : (I) Port selected.

REMARKS

The mioDriver function executes the next state of any previously started MIO function such as

mioSendTo, mioWaitFor, and mioQuiet. Returns MIO_IDLE (defined in MIO.H) if idle (not running),

MIO_RUNNING if running, and anything else that is a character from the modem that can be displayed if

wanted.

RETURNS

 Return = MIO_IDLE (if the driver is ready for the next mioSendTo, mioWaitFor, or mioQuiet)

 Return = MIO_RUNNING (if the driver is not idle)

 Return = <else> (if the driver is not idle, and the returned character was received from the

modem)

EXAMPLE

 Code = mioDriver(Port)

 60

3.3 mioQuiet :: Waits for Modem I/O state driver.

SYNTAX

mioQuiet(Port, Wait)

 Port : (I) Port selected.

 Wait : (L) Wait in milliseconds.

REMARKS

The mioQuiet function waits for continuous quiet [no incoming serial data] of 'Wait' milliseconds before

returning. Any incoming characters while mioQuiet is running are lost.

RETURNS

Return = TRUE.

EXAMPLE

 Code = mioQuiet(Port, 1000)

 61

3.4 mioResult :: Returns result of last mioWaitFor.

SYNTAX

mioResult(Port)

 Port : (I) Port selected.

REMARKS

The mioResult function returns the result of the last mioWaitFor function. This function should not be

called until the driver returns MIO_IDLE. See the remarks section of the mioWaitFor function for an

example.

RETURNS

 Return = 0 (False - last WaitFor not matched)

 Return = !0 ('0' if first substring matched, '1' if second substring matched, etc.)

EXAMPLE

 Code = mioResult(Port)

ALSO SEE

mioWaitFor.

 62

3.5 mioSendTo :: Sends string to modem.

SYNTAX

mioSendTo(Port, Pace, Text)

 Port : (I) Port selected.

 Pace : (L) The inter-character delay in milliseconds.

 String : (P) The string to send.

REMARKS

The mioSendTo function sends the characters in the string 'Text' to serial output. There is a delay of 'Pace'

milliseconds between characters. Three characters in 'Text' are interpreted as:

 [NAME] : [FUNCTION]

 char is '^' : next character is control char (^A for 0x01)

 char is '!' : replaced with carriage return.

 char is '~' : removed from string (delay 1/2 second).

RETURNS

Return = TRUE.

EXAMPLE

 Code = mioSendTo(Port, 100, "ATDT555~1212!")

 63

3.6 mioWaitFor :: Waits for continuous quiet.

SYNTAX

mioWaitFor(Port, Wait, Text)

 Port : (I) Port selected.

 Wait : (L) Total time to wait for response (milliseconds).

 Text : (P) The expected response string.

REMARKS

The mioWaitFor function waits for characters from serial input that match the string 'Text'. A total of

'Wait' milliseconds are allowed before timing out and returning FALSE (0). The string comparison is

NOT case sensitive.

The function mioDriver() must be called until MIO_IDLE is returned. Then mioResult() is called to get

the result of the mioWaitFor. Looking at the example below, a value of 0 indicates that neither

"CONNECT", "BUSY", nor "NO CARRIER" was received. A non-zero value indicates that one of the

three sub-strings was received. A '0' is returned if "CONNECT" was seen, '1' is returned if "NO

CARRIER" was seen, and '2' is returned if "BUSY" was seen.

RETURNS

A character as described above.

EXAMPLE

 Code = mioWaitFor(Port, 60000, "CONNECT|NO CARRIER|BUSY")

ALSO SEE

mioResult.

 64

4 XYM Functions

4.1 xyAbort :: Aborts the XYDRIVER state driver.

SYNTAX

xyAbort(Port)

 Port : (I) Port selected.

REMARKS

The xyAbort function forces the driver to IDLE, terminating any file transfer that may be in progress.

RETURNS

Return = XY_NO_ERROR (0).

EXAMPLE

 Code = xyAbort(Port)

 65

4.2 xyAcquire :: Prepares the state driver for operation.

SYNTAX

xyAcquire(FirstPort, LastPort)

 FirstPort : (I) First port selected.

 LastPort : (I) Last port selected.

REMARKS

The xyAcquire function initializes the driver for subsequent use. This should be the first driver function

called.

RETURNS

 Return = =0 (No error [XY_NO_ERROR])

 Return = <0 (XYDRIVER error. See "XYDRIVER Error Codes")

EXAMPLE

 Code = xyAcquire(COM1, COM1)

ALSO SEE

xyRelease.

 66

4.3 xyDebug :: Set the driver debug level.

SYNTAX

xyDebug(Level)

 Level : (I) Debug level value.

REMARKS

The xyDebug function sets the driver debug level as follows:

 [LEVEL] [FUNCTION]

 Level is 0 : Only error messages are generated (default).

 Level is 1 : Minimal debug messages are generated.

 Level is 2 : Maximal debug messages are generated.

Debug messages are retrieved using the xyGetMessage function.

RETURNS

New debug level [0,1,2]

EXAMPLE

 Code = xyDebug(0)

ALSO SEE

xyGetMessage.

 67

4.4 xyDriver :: XMODEM / YMODEM state driver.

SYNTAX

xyDriver(Port)

 Port : (I) Port selected.

RETURNS

 Return = XY_IDLE : A transfer is not underway.

REMARKS

The xyDriver function drives the state engine. Note that xyDriver never returns an error code.

In order to send or to receive a file, call xyDriver in a loop until it returns XY_IDLE (numerical 0) after

first initiating the transfer by calling either xyStartTx or xyStartRx.

xyDriver can be called as often as wanted whether or not a file transfer was initiated.

EXAMPLE

 Code = xyDriver(Port)

ALSO SEE

xyStartTx and xyStartRx.

 68

4.5 xyGetFileName :: Get the filename from packet 0

SYNTAX

xyGetFileName(Port, Buffer, Size)

 Port : (I) Port selected.

 Buffer : (P) Filename buffer.

 Size : (I) Size of Filename buffer.

REMARKS

The xyGetFileName function gets the current filename. This function is designed for use on the receive

side YMODEM protocol, where the filename is received as part of the first packet (packet #0). See the

TERM example program.

RETURNS

 Return = TRUE (A message was copied into Buffer)

 Return = FALSE (No messages are available)

EXAMPLE

C/C++ Example

 char Buffer[128]

 Code = xyGetFileName(Port, (char *)Buffer, 128)

BASIC Example

 Dim Buffer As String

 Buffer = Space(128)

 Code = xyGetFileName(Port, Buffer, 128)

ALSO SEE

xyGetParameter.

 69

4.6 xyGetMessage :: Get next XYDRIVER message.

SYNTAX

xyGetMessage(Port, Buffer, Size)

 Port : (I) Port selected.

 Buffer : (P) Message buffer.

 Size : (I) Size of message buffer.

REMARKS

The xyGetMessage function retrieves the next message from the driver message queue. Refer to the

TERM example program for an example of using xyGetMessage.

RETURNS

 Return = TRUE (A message was copied into Buffer)

 Return = FALSE (No messages are available)

EXAMPLE

C/C++ Example

 char Buffer[64]

 Code = xyGetMessage (Port, (char *)Buffer, 64)

BASIC Example

 Dim Buffer As String 64

 Buffer = Space(64)

 Code = xyGetMessage(Port, Buffer, 64)

ALSO SEE

xyDebug.

 70

4.7 xyGetParameter :: Retrieves driver parameter.

SYNTAX

xyGetParameter(Port, Parm)

 Port : (I) Port Selected.

 Parm : (I) Parameter to return.

REMARKS

The parameter value corresponding to the following table is returned.

 [NAME] : [FUNCTION]
 XY_GET_VERSION : Returns XYM version (a.b.c).

 XY_GET_BUILD : Returns XYM build number.

 XY_GET_ERROR_CODE : Driver error code (see XYM.H)

 XY_GET_ERROR_STATE : Error state (if in error).

 XY_GET_PACKET : Current packet number.

 XY_GET_STATE : Current state (see XYDRIVER.C).

 XY_GET_FILE_SIZE : File size.

 XY_GET_NBR_NAKS : Get number of packets ACK’ed.

 XY_GET_LAST_GET : Last incoming (serial) character.

 XY_GET_LAST_PUT : Last outgoing (serial) character.

 XY_GET_GET_COUNT : Number of incoming characters (bytes).

 XY_GET_PUT_COUNT : Number of outgoing characters (bytes).

 XY_GET_DRIVER_COUNT : Number times xyDriver() was called.

 XY_GET_SHORT_PACKETS : Get number of short packets (RX side only).

 XY_GET_PACKETS_ACKED : Get number of packets ACK'ed.

 -1 : Cannot recognize parameter.

The xyGetParameter function can be used to check the state of the driver. For example:

(1) xyGetParameter(Port, XY_GET_STATE) returns XY_IDLE if idle.

(2) xyGetParameter(Port, XY_GET_ERROR_CODE) returns the driver error code if an error has

occurred or XY_NO_ERROR (0) otherwise.

RETURNS

See above.

EXAMPLE

 Code = xyGetParameter(Port, XY_GET_VERSION)

 71

4.8 xyRelease :: Releases driver port.

SYNTAX

xyRelease()

REMARKS

The xyRelease function releases the ports that were previously acquired with xyAcquire. This function

should be called before calling the WSC function SioClose or SioDone.

RETURNS

 Return = 0 (No error [XY_NO_ERROR])

 Return = <0 (XYDRIVER error. See "XYDRIVER Error Codes")

EXAMPLE

 Code = xyRelease()

ALSO SEE

xyAcquire.

 72

4.9 xySetParameter :: Sets driver parameter.

SYNTAX

xySetParameter(Port, ParmName, ParmValue)

 Port : (I) Port Selected.

 ParmName : (I) Parameter Name.

 ParmValue : (L) Parameter Value.

REMARKS

The ParmValue corresponding to the following table is set.

 [NAME] : [FUNCTION]
 ParmName = XY_SET_NAK_RATE : Sets the prompt delay (in seconds).

 ParmName = XY_SET_EOF_CHAR : Sets the XMODEM pad character.

 ParmName = XY_SET_ONE_SECOND : Sets the # milliseconds second.

The XY_SET_NAK_RATE parameter sets the delay (in seconds) between prompts that the receiver

transmits to the sender to start the file transfer. The legal range is 1 to 10 seconds.

The XY_SET_EOF_CHAR parameter sets the pad character used by XMODEM in padding the last packet

to 128 bytes. The normal value is control-Z (hex 1A).

The XY_SET_ONE_SECOND parameter (if set to less than 1000) is used to speed up the protocol by

reducing waits. To reduce all time delays to half of their default value, use 500.

RETURNS

See above.

EXAMPLE

 Code = xySetParameter(Port, XY_SET_EOF_CHAR, 0)

 73

4.10 xySetString :: Set Upload/Download Directory String.

SYNTAX

xySetString(Port, ParamName, ParamString)

 Port : (I) Port to use.

 ParamName : (I) Parameter name

 ParamString : (P) Pointer to parameter string

REMARKS

They location of the local upload/download directory can be specified by passing XY_SET_FILES_DIR as

the ParamName and a pointer to the requested directory as ParamString.

If the local upload/download directory is not specified, then the current directory is the default location.

RETURNS

 Return > 0 (No error)

 Return = -1 (ParamName is not recognized)

EXAMPLE

C/C++ Example

 Code = xySetString(Port, XY_SET_FILES_DIR, "C:\\WINDOWS\TEMP");

BASIC Example

 Code = xySetString(Port, XY_SET_FILES_DIR, "C:\WINDOWS\TEMP")

ALSO SEE

None.

 74

4.11 xyStartRx :: Start XMODEM or YMODEM receive.

SYNTAX

xyStartRx(Port, Filename, NCGchar, Batch)

 Port : (I) Port to use.

 Filename : (P) File to receive (XMODEM only).

 NCGchar : (I) NAK, 'C', or 'G'.

 Batch : (I) YMODEM flag (T/F).

REMARKS

The xyStartRx starts the XMODEM or YMODEM file receive. Once started, calls to xyDriver are made

to execute the next state (or states). The xyStartTx function returns immediately. The protocols

supported and their parameters are as follows:

 [Protocol] : [NCGchar] [BatchFlag]

 XMODEM : NAK FALSE (Standard XMODEM)

 XMODEM/CRC : 'C' FALSE

 XMODEM/1K : 'C' FALSE

 YMODEM : 'C' TRUE (Standard YMODEM)

RETURNS

 Return = TRUE (No error)

 Return = FALSE (Not started. Port not active)

EXAMPLE

C/C++ Example

 Code = xyStartRx(Port, "MYFILE.ZIP", 'C', 1)

BASIC Example

 Code = xyStartRx(Port, "MYFILE.ZIP", ASC("C"), 1)

ALSO SEE

xyStartTx and xyDriver.

 75

4.12 xyStartTx :: Start XMODEM or YMODEM transmit.

SYNTAX

xyStartTx(Port, Filename, OneK, Batch)

 Port : (I) Port to use.

 Filename : (P) File to send.

 OneK : (I) Want 1K blocks (T/F).

 Batch : (I) YMODEM flag (T/F).

REMARKS

The xyStartTx starts the XMODEM or YMODEM file send. Once started, calls to xyDriver are made to

execute the next state (or states). The xyStartTx function returns immediately. The protocols supported

and their parameters are as follows:

 [Protocol] : [OneKflag] [BatchFlag]

 XMODEM : FALSE FALSE Standard XMODEM

 XMODEM/CRC : FALSE FALSE

 XMODEM/1K : TRUE FALSE

 YMODEM : TRUE TRUE Standard YMODEM

RETURNS

 Return = TRUE (No error)

 Return = FALSE (Not started. Port not active)

EXAMPLE

 Code = xyStartTx(Port, "MYFILE.ZIP", 0, 1)

ALSO SEE

xyStartRx and xyDriver.

 76

5 Error Codes

5.1 WSC Error Codes

 [NAME] : [FUNCTION]
 WSC_ABORTED : The evaluation version of WSC corrupted.

 WSC_BAD_CMD : No such command.

 WSC_BAD_PARITY : Bad parity parameters.

 WSC_BAD_STOPBIT : Bad stop bit parameter.

 WSC_BAD_WORDLEN : Bad word length parameter.

 WSC_BUFFER_RANGE : Parameter (buffer address) out of range.

 WSC_BUFFERS : Cannot allocate memory for buffers.

 WSC_BUFLEN_RANGE : Parameter (buffer length) out of range.

 WSC_BUSY : Port is busy (try again later).

 WSC_EXPIRED : Evaluation version expired.

 WSC_IE_BADID : No such port.

 WSC_IE_BAUDRATE : Unsupported byte size.

 WSC_IE_BYTESIZE : Unsupported byte size.

 WSC_IE_DEFAULT : Error in default parameters

 WSC_IE_HARDWARE : COM port hardware not present

 WSC_IE_MEMORY : Cannot allocate memory.

 WSC_IE_NOPEN : Port not opened. Call SioReset first.

 WSC_IE_OPEN : Port already opened.

 WSC_IO_ERROR : An event error has occurred.

 WSC_KEYCODE : Bad key code value.

 WSC_NO_DATA : No incoming serial data is available.

 WSC_RANGE : A parameter is out of range.

 WSC_THREAD : Cannot start thread.

 WSC_WIN32ERR : Win32/Win64 system error.

The WSC_ABORTED error occurs in the evaluation version only if there is a problem displaying the

software info screen.

The WSC_WIN32ERR error code is returned only for Win32/Win64 system errors. Call SioWinError to

retrieve the error message.

5.2 XYDRIVER Error Codes

Error codes are always negative, except for "no error". Most of these error conditions rarely occur. Also

note that XYDRIVER functions can return WSC errors. An error message is queued when an error occurs

which can be retrieved with xyGetMessage.

 [NAME] : [FUNCTION]
 XY_NO_ERROR : No error.

 XY_UNKNOWN_ERROR : Unknown error.

 XY_ALREADY_ACTIVE_ERROR : Port already acquired.

 XY_CANNOT_OPEN_ERROR : Cannot open specified file.

 XY_EMPTY_FILE_ERROR : Specified file is empty.

 XY_NO_STARTUP_CHAR_ERROR : Must specify NAK, 'C', or 'G'.

 XY_NOT_NCG_ERROR : Expected NAK, 'C', or 'G'.

 XY_DISK_READ_ERROR : Error reading disk.

 XY_NO_EOT_ACK_ERROR : EOT was not ACK’ed.

 XY_INTERNAL_ERROR : Internal error!

 XY_CANCELLED_ERROR : Other side canceled.

 XY_OUT_OF_SYNC_ERROR : Protocol has lost synchronization.

 XY_RETRIES_ERROR : Packet retry limit was exceeded.

 XY_BAD_PACKET_NBR_ERROR : Incorrect packet number.

 XY_TIMED_OUT_ERROR : Timed out waiting for other side.

 XY_NO_SUCH_FILE_ERROR : No such file.

 XY_NOT_ACTIVE_ERROR : Port not acquired by xyAcquire.

 XY_PORT_RANGE_ERROR : Port number out of range.

The numerical value for each error code is listed in the file wscErrors.txt located in the \DOCS

subdirectory.

