
 1

MarshallSoft Client Mailer

Library for Delphi

Reference Manual

(MCM4D)

Version 5.2

April 10, 2019

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2019

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815

Email: info@marshallsoft.com

Web: www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 General Remarks Page 3

 1.2 MCM Files Page 3

 1.3 Documentation Set Page 3

2 MCM Functions Page 5

 2.1 mcmAttach Page 6

 2.2 mcmComputeCRC Page 7

 2.3 mcmGetError Page 8

 2.4 mcmGetInteger Page 9

 2.5 mcmGetInteger2 Page 10

 2.6 mcmGetLetterMacro Page 11

 2.7 mcmGetListMacro Page 12

 2.8 mcmGetString Page 13

 2.9 mcmGetString2 Page 14

 2.10 mcmKillProgram Page 15

 2.11 mcmLoadString Page 16

 2.12 mcmMakeStyled Page 17

 2.13 mcmMergeNext Page 18

 2.14 mcmMergeText Page 19

 2.15 mcmOpenBounce Page 20

 2.16 mcmOpenHeader Page 21

 2.17 mcmOpenLetter Page 22

 2.18 mcmOpenList Page 23

 2.19 mcmOpenReply Page 24

 2.20 mcmOpenSkip Page 25

 2.21 mcmPop3Close Page 26

 2.22 mcmPop3Connect Page 27

 2.23 mcmReadReply Page 28

 2.24 mcmRelease Page 29

 2.25 mcmSearch Page 30

 2.26 mcmSendMail Page 31

 2.27 mcmSetInteger Page 32

 2.28 mcmSetProxySSL Page 33

 2.29 mcmSetString Page 34

 2.30 mcmSleep Page 35

 2.31 mcmSmtpClose Page 36

 2.32 mcmSmtpConnect Page 37

 2.33 mcmStartProgram Page 38

 2.34 mcmStatistics Page 39

 2.35 mcmUtility Page 40

 2.36 mcmWriteToLog Page 41

3 MCM Error List Page 42

 3

1 Introduction

The MarshallSoft Client Mailer for Delphi provides the capability to send personalized email to your

clients or customers directly from your Delphi application program. The “MarshallSoft Client Mailer for

Delphi Reference Manual” contains details on each individual MCM function.

The most current version of the MarshallSoft Client Mailer for Delphi can be found at

http://www.marshallsoft.com/mcm4d.htm.

1.1 General Remarks

This is the reference manual for the Delphi version of the MarshallSoft Client Mailer (MCM). There are also

versions of MCM for C/C++, Visual Basic, FoxPro, dBase, and Xbase++. All versions employ the identical

MCM32.DLL (and MCM64.DLL) differing only in documentation and example programs.

All MarshallSoft Client Mailer (MCM) functions return an Integer code. Negative values are always errors.

Refer to Section 3.0 below, "MCM Error Return Code List". The file mcmErrors.txt contains a list of all error

codes and their corresponding numerical value.

Non-negative return codes are never errors. Note that the mcmErrorText function is used to get the text

message associated with any error code.

1.2 MCM Files (Delphi)

 mcm32.pas : MCM function declaration file for 32-bit Delphi (uses

 pointers)

 mcm64.pas : MCM function declaration file for 64-bit Delphi (uses

 pointers)

 mcm32.dll : The 32-bit MarshallSoft Client Mailer Dynamic Link Library

 mcm64.dll : The 64-bit MarshallSoft Client Mailer Dynamic Link Library

http://www.marshallsoft.com/mcm4d.htm

 4

1.3 Documentation Set

There are five manuals in Adobe PDF format for the MarshallSoft Client Mailer.

 Tutorial Manual: Introduces the basic functionality and overview of the MarshallSoft Client

Mailer.

 Servers Manual: Covers background information on SMTP & POP3 servers.

 User Manual: Covers information that is not programming language specific (letter & list

preparation, program logic, purchasing, performance, SSL, etc.).

 Reference Manual: Contains details for each individual MCM function specific for each

programming language (Delphi, C/C++, VB, etc.).

 Programmer Manual: Contains programming language (Delphi, C/C++, VB, etc.) specific

information such as compiling and running example programs.

It is highly recommended that the tutorial manual be read first. The manuals can be found in the DOCS

subdirectory in the MarshallSoft Client Mailer file structure when it is installed.

 Tutorial Manual: mcm_tutorial.pdf or online at

http://www.marshallsoft.com/mcm_tutorial.pdf.

 Servers Manual: mcm_servers.pdf or online at

http://www.marshallsoft.com/mcm_servers.pdf.

 User Manual: mcm_users.pdf or online at

http://www.marshallsoft.com/mcm_users.pdf.

 Reference Manuals mcm4d_reference.pdf or

 online at http://www.marshallsoft.com/mcm4d_reference.pdf.

 Programmer Manuals mcm4d_programmer.pdf or

 online at http://www.marshallsoft.com/mcm4d_programmer.pdf.

http://www.marshallsoft.com/mcm_tutorial.pdf
http://www.marshallsoft.com/mcm_servers.pdf
http://www.marshallsoft.com/mcm_users.pdf
http://www.marshallsoft.com/mcm4d_reference.pdf
http://www.marshallsoft.com/mcm4d_programmer.pdf

 5

2.0 MCM Functions

The following functions will be found in the mcm32.pas & mcm64.pas units.

2.1 mcmAttach: Initialize MarshallSoft Client Mailer.

SYNTAX

function mcmAttach(KeyCode:Integer; EditionCode:Integer;

 ChansWanted:Integer; DebugLevel:Integer):Integer;

 PathToMCM:AnsiString):Integer

 KeyCode : MCM key code (identifies purchaser)

 EditionCode : MCM edition code (no longer used; pass 0)

 ChansWanted : Maximum # channels requested.

 DebugLevel : Debug level (0=OFF, 1=LOW, 2=HIGH)

 PathToMCM : Pathname of files folder.

REMARKS

The mcmAttach function initializes the Client-Mailer DLL (MCM32.DLL or MCM64.DLL), passing the

initialization parameters (1) KeyCode [0 for the evaluation version], (2) Edition Code [pass 0], (3) the

maximum number of channels to use when sending email, (4) the debug level; 0 for no debug, 1 for low, and 2

for high, and (5) PathToMCM, the pathname of the log file folder.

A keycode file (keycode.pas) containing the customer's keycode is included when MCM4D is purchased.

mcmAttach must be the first MarshallSoft Client Mailer (MCM) function called, excepting mcmUtility.

RETURNS

 Evaluation: # days remaining in the evaluation (trial) period.

 Purchased: 999

EXAMPLE CODE

var KeyCode : Integer;

 EditionCode : Integer;

 ChansWanted : Integer;

 Debug : Integer;

 PathToMCM : AnsiString;

KeyCode := 0; {evaluation version}

EditionCode := 0;

ChansWanted := 24;

Debug := MCM_DEBUG_OFF;

PathToMCM := 'c:\mcm4d\apps';

Code := mcmAttach(KeyCode, 0, ChansWanted, Debug, @PathToMCM[1]);

EXAMPLE PROGRAMS

Test, Send and Reply.

 6

2.2 mcmComputeCRC: Computes the CRC of a text buffer.

SYNTAX

function mcmComputeCRC(Buffer:AnsiString): Integer

 Buffer : Text buffer.

REMARKS

The mcmComputeCRC function is used to compute the CRC (using polynomial 1021 hex) of a null

terminated text string.

RETURNS

The CRC of the characters in the null terminated buffer.

EXAMPLE CODE

var CRC : Integer;

var Text : AnsiString;

Text := 'Hello, world!';

CRC = mcmComputeCRC(Text);

EXAMPLE PROGRAMS

None.

 7

2.3 mcmGetError: Get text associated with error code.

SYNTAX

function mcmGetError(ErrCode:Integer; Buffer:AnsiString):Integer

 ErrCode : Error code.

 Buffer : Error text buffer.

REMARKS

The mcmGetError function is used to copy the error text associated with the error code 'ErrCode' returned by

a MCM function to the buffer, where it can be displayed by the calling program code.

RETURNS

Return = 0 : No such error.

Return < 0 : The number of bytes copied into the buffer.

EXAMPLE CODE

var Buffer:AnsiString;

If ErrCode < 0 Then

 ' get MCM error message

 Buffer := AnsiString(StringOfChar(Chr(0), 256));

 Code := mcmGetError(ErrCode, @Buffer[1])

 . . .

EXAMPLE PROGRAMS

Send and Reply

 8

2.4 mcmGetInteger: Gets MCM processing information.

SYNTAX

function mcmGetInteger(ParmName:Integer):Integer

 ParmName : Parameter number.

REMARKS

The mcmGetInteger function returns an integer whose value depends on the value of the passed parameter

'ParamName' as follows.

RETURNS

MCM_GET_VERSION : The version of MCM in packed hexadecimal format (X.Y.Z)

MCM_GET_VERSION_1ST_PART : The first digit of the version of MCM.

MCM_GET_VERSION_2ND_PART : The second digit of the version of MCM.

MCM_GET_VERSION_3RD_PART : The third digit of the version of MCM.

MCM_GET_BUILD : The build number of MCM.

MCM_GET_LETTER_LINE_NBR : The current letter line just processed.

MCM_GET_LETTER_CHAR_POS : The current character position on the current letter line.

MCM_GET_LETTER_MACROS : The number of macros (substitution strings) found in the letter.

MCM_GET_LIST_LINE_NBR : The current list line just processed.

MCM_GET_MAX_LIST_SIZE : The maximum number of entries allowed in the list of recipients..

MCM_GET_MAX_CHANNELS : The number of channels being used to send email.

MCM_GET_CUSTOMER_ID: The customer ID.

MCM_GET_ALLOWED_CHANNELS: The maximum allowed number of channels.

MCM_GET_ALLOWED_LIST_SIZE: The maximum allowed list size.

MCM_GET_ALLOWED_SKIP_FILES: The maximum allowed number o skip files.

MCM_GET_ALLOWED_REPLY_FILES: The maximum number of reply files.

MCM_GET_EDITION: The MCM edition (no longer used).

MCM_GET_REGISTRATION: The customer registration string.

 9

MCM_GET_CHANNEL_STATUS : The current channel status where each bit represents one channel.

MCM_GET_EMAIL_QUEUED_COUNT : The number of emails queued to be sent.

MCM_GET_EMAIL_SENT_COUNT : The number of emails successfully sent.

MCM_GET_EMAIL_ERROR_COUNT : The number of emails queued but not sent due to errors.

MCM_GET_LIST_LINES : The number of lines in the list file.

MCM_GET_LETTER_LINES : The number of lines in the letter file.

MCM_GET_SKIP_LINES : The number of lines in last skip file loaded.

MCM_GET_LIST_MACRO_COUNT : The number of macros (substitution strings) in the recipient list.

MCM_GET_LIST_DELIMITER : The macro (substitution string) delimiter. This will be either the comma,

semicolon, tab, carrot ^, or tilde ~.

MCM_GET_LIST_ERROR_STRING : The line number of last error in the recipient list.

MCM_GET_SKIP_FILE_LIMIT : The maximum number of skip files allowed.

MCM_GET_REPLY_FILE_LIMIT : The maximum number of reply files allowed.

EXAMPLE CODE

Code := mcmGetInteger(MCM_GET_CUSTOMER_ID);

Display(Format('Customer ID : %d',[Code]))

EXAMPLE PROGRAM

Send

 10

2.5 mcmGetInteger2: Get information for macro processing.

SYNTAX

function mcmGetInteger2(ParmName:Integer; Selected:Integer):Integer

 ParamName : Parameter number.

 Selected : Selection number for ParamName.

REMARKS

The mcmGetInteger2 function returns an Integer value corresponding to the passed parameters 'ParamName'

and 'Select'.

RETURNS

MCM_GET_LETTER_MACRO_LINE : Get the line on which the 'Select' macro appears.

EXAMPLE CODE

{get macro string i (1,2,3,...)}

var Buffer:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

Code := mcmGetLetterMacro(i, @Buffer[1]);

if Code > 0 then

 begin

 {find line in letter on which macro # i occurs}

 Code := mcmGetInteger2(MCM_GET_LETTER_MACRO_LINE, i);

 Display(Format('Macro %s defined on line %d', [Buffer, Code]));

 end;

EXAMPLE PROGRAMS

(none)

 11

2.6 mcmGetLetterMacro: Get Macro Substitution String in Letter

SYNTAX

function mcmGetLetterMacro(MacroNumber:Integer; Buffer:AnsiString):Integer

 MacroNumber : Macro number (1,2,...)

 Buffer : Macro buffer.

REMARKS

The mcmGetLetterMacro returns the macro (substitution string) in the letter associated with the macro

number (1,2,3,...). Macros may be up to 40 characters in length. The first macro in a letter is #1, the second is

#2, etc.

For example, consider the letter as shown in Section 2.12 mcmOpenLetter. The first macro in the letter is

`EmailAddress`, the second is `Fullname`, etc.

RETURNS

Return > 0 : The line number (in the letter) on which macro appears.

Return < 0 : The error code MCM_NO_SUCH_MACRO.

EXAMPLE CODE

{get macro string i (1,2,3,...)}

var Buffer:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

Code := mcmGetLetterMacro(i, @Buffer[1]);

if Code > 0 then

 begin

 {find line in letter on which macro # i occurs}

 Code := mcmGetInteger2(MCM_GET_LETTER_MACRO_LINE, i);

 Display(Format('Macro %s defined on line %d', [Buffer, Code]));

 end;

EXAMPLE PROGRAMS

(none)

ALSO SEE

mcmGetListMacro

 12

2.7 mcmGetListMacro: Get Macro Substitution String in Recipient List

SYNTAX

function mcmGetListMacro(MacroNumber:Integer; Buffer:AnsiString):Integer

 MacroNumber : Macro number (1,2,...)

 Buffer : Macro buffer.

REMARKS

The mcmGetListMacro returns the macro (substitution string) in the recipient list associated with the macro

number (1,2,3,...). Macros may be up to 40 characters in length, and are defined on the first line of the list.

For example, consider the recipient list as shown in section 2.13 mcmOpenList. There are three macros

(always appearing on the first line) in the list. The first macro is `EmailAddress`, the second is

`AppointmentTime`, and the third is `Fullname`.

Called by the application code that sends the email such as the Send example program.

RETURNS

Return > 0 : The macro index.

Return < 0 : The error code MCM_NO_SUCH_MACRO.

EXAMPLE CODE

{get list macro i (1,2,3,...)}

var Buffer:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

Code := mcmGetListMacro(i, @Buffer[1]);

if Code > 0 then Display('Macro = ' + Buffer)

EXAMPLE PROGRAMS

(none)

ALSO SEE

mcmGetLetterMacro

 13

2.8 mcmGetString: Gets string parameter for MCM processing.

SYNTAX

function mcmGetString(ParmName:Integer; Buffer:AnsiString):Integer

 ParmName : Parameter number

 Buffer : String buffer.

REMARKS

The mcmGetString function returns a string which contents depends on the value of the passed parameter

'ParamName' as follows. Note that MCM reads only the headers of incoming email.

MCM_GET_VERSION : Copies the MCM version string into 'Buffer'.

MCM_GET_LETTER : Copies the entire letter into 'Buffer'. Requires SMTP connection.

MCM_GET_SUBJECT : Copies the letter subject into 'Buffer'. Requires SMTP connection.

MCM_GET_BODY : Copies the body of the letter into 'Buffer'. Requires SMTP connection.

MCM_GET_FROM : Copies the "From:" address into 'Buffer'. Requires SMTP connection.

MCM_GET_TIME_STAMP : Copies the current date & time string into 'Buffer'.

MCM_GET_LAST_EMAIL_SENT : Copies address of last email sent into 'Buffer'.

RETURNS

The number of characters copied.

EXAMPLE CODE

var Work:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

Code := mcmGetString(MCM_GET_LETTER, @Buffer[1]);

if Code > 0 then Display(Buffer)

EXAMPLE PROGRAMS

SendMail and Reply

ALSO SEE

mcmGetInteger and mcmGetInteger2

 14

2.9 mcmGetString2: Gets string parameter for MCM processing.

SYNTAX

function mcmGetString(ParmName, Selection:Integer;

 Buffer:AnsiString):Integer

 ParmName : Parameter number

 Selection: Selection index (1,2,...)

 Buffer : String buffer.

REMARKS

The mcmGetString function returns a string which contents depends on the value of the passed parameter

'ParamName' as follows. Note that MCM reads only the headers of incoming email.

MCM_GET_BOUNCE_STRING : Copies the selected 'bounce' string into 'Buffer'. The bounce string must

have been previously set by mcmSetString(MCM_ADD_BOUNCE_STRING, @String[1]).

Bounce strings are numbered 1,2,...

RETURNS

The number of characters copied.

EXAMPLE CODE

var Buffer:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

Code := mcmGetString2(MCM_GET_LETTER, 1, @Buffer[1]);

if Code > 0 then Display(Buffer);

EXAMPLE PROGRAMS

SendMail and Reply

ALSO SEE

mcmGetInteger and mcmGetInteger2

 15

2.10 mcmKillProgram: Terminates External Program.

SYNTAX

 function mcmKillProgran(ProcessID:Integer;

 ExitCode:Integer):Integer;

 ProcessID : (I) Process ID (returned from mcmStartProgram)

 ExitCode : (P) Exit code.

REMARKS

The mcmKillProgram function kills (terminates) the external program (process) that was started by

mcmStartProgram, where the ProcessID was returned by mcmStartProgram.

RETURNS

 Return < 0 : Cannot kill program.

EXAMPLES

 var ProcessID : Integer;

 var Code : Integer;

 {kill program - ProcessID returned from mcmStartProgram}

 Code := mcmKillProgram(ProcessID, 0);

EXAMPLE PROGRAMS

None.

ALSO SEE

mcmStartProgram

 16

2.11 mcmLoadString: Load substitution string.

SYNTAX

function mcmLoadString(StringKey:AnsiString;

 StringText:AnsiString):Integer

 StringKey : String key.

 StringText : String text.

REMARKS

The mcmLoadString loads the substitution string for advanced macros.

Advanced macros are not currently implemented in MCM.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

 (none)

EXAMPLE PROGRAMS

 (none)

 17

2.12 mcmMakeStyled: Make Styled File.

SYNTAX

mcmMakeStyled(TextFile:AnsiString;FontList:AnsiString;

 SizeCode:Integer;HtmlLine:AnsiString;Flags:Integer)

 TextFile : Filename of ASCII text file to be converted.

 FontList : List of fonts.

 SizeCode : HTML size.

 HtmlLine : URL of tracking image file.

 Flags : (reserved)

REMARKS

The mcmMakeStyled function creates a HTML formatted email message file from a ASCII email message

file. The created HTML filename is the text filename with “.htm” appended to it.

The primary purpose for the mcmMakeStyled function is to enable tracking when a particular email is

opened. See the section “Email Tracking” in the MCM User’s Manual (mcm_users.pdf).

The font list is the list of preferred font, as for example "Arial, Helvetica".

The size code is the HTML size parameters. Pass 0 to specify the default size, which normally corresponds to

size 3.

The HtmlLine is the URL of the image file used for tracking , as for example:

 "https://mcm-user.000webhostapp.com/mcm_counter.php?DATE_030419_CID_000100"

The Flags parameter is not used in this version (5.2) of MCM.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

var

 TextFile:AnsiString;

 FontList:AnsiString;

 HtmlLine:AnsiString;

 SizeCode : Integer;

begin

 TextFile := AnsiString('Letter.txt');

 FontList := AnsiString('Arial, Helvetica');

 HtmlLine := AnsiString('https://mcm-

user.000webhostapp.com/mcm_counter.php?DATE_030419_CID_000100');

 Code := mcmMakeStyled(@TextFile[1], @FontList[1], 3, @HtmlLine[1], 0);

EXAMPLE PROGRAM

Styled_Pgm.pas

 18

2.13 mcmMergeNext: Merge next recipient for sending.

SYNTAX

function mcmMergeNext(): Integer

REMARKS

The mcmMergeNext function merges the next recipient from the recipient list with the loaded letter in

preparation for sending.

See the mcmMergeText function for a list of the merge codes.

Called by the application code that sends the email such as the SendMail example program.

RETURNS

 < -1 Error (see Section 3.0 MCM Error List)

 = -1 End-of-file (MCM_EOF)

 = 0 OK to send

 > 0 Don't send (see fMergeText)

EXAMPLE CODE

{send letter to each recipient}

for I := 1 to 1000 do

 begin

 {merge letter with next recipient}

 MergeCode := mcmMergeNext();

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmMergeText

 19

2.14 mcmMergeText: Get text for associated merge code.

SYNTAX

function mcmMergeText(MergeCode:Integer; Buffer:AnsiString):Integer

 MergeCode : Merge code.

 Buffer : String buffer.

REMARKS

The mcmMergeText function copies the merge code text corresponding with the numerical 'MergeCode' to

'Buffer' so that it can be displayed by the calling application program.

Recall (Section 2.9) that if the value returned by the mcmMergeNext function (called the "merge code") is

positive, then email should not be sent to this particular recipient. The numerical values of the merge codes

are listed in mcm32.pas & mcm64.pas and include

MCM_MERGE_INVALID_ADDRESS : Invalid email address

MCM_MERGE_DUPLICATE_ADDRESS : Duplicate email address

MCM_MERGE_BRACKETS_NOT_ALLOWED : '<' and '>' not allowed in email address

MCM_MERGE_CANNOT_OPEN_ATTACH : Cannot open attachment

MCM_MERGE_UNKNOWN_CHARSET : Unknown character set

MCM_MERGE_EMTY_MACRO_STRING : Empty macro string found in recipient list.

In addition, merge codes between 1 and 24 indicate that the email address was found in a skip (exclusion) list:

MergeCode = 1 : Email address was found in skip list #1

MergeCode = 2 : Email address was found in skip list #2

. . .

MergeCode = 24 : Email address was found in skip list #24

Called by the application code that sends the email such as the Send example program.

RETURNS

Number of characters copied to 'Buffer'.

EXAMPLE CODE

var Buffer:AnsiString;

Buffer := AnsiString(StringOfChar(Chr(0), 256));

if MergeCode > 0 then

 Code := mcmMergeText(MergeCode, @Buffer[1]);

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmMergeNext and mcmOpenSkip

 20

2.15 mcmOpenBounce: Open bounce file for processing.

SYNTAX

function mcmOpenBounce(PathName:AnsiString): Integer

 PathName : Pathname of bounce file.

REMARKS

The mcmOpenBounce opens the "bounce" file into which are written (when checking for client replies) the

email addresses that have been returned as undeliverable (bounced).

This file is created when reading replies (see the Reply example program) after previously sending email (see

the Send example program) and can be used as one of the "skip files" the next time email is sent.

Called by the application code that reads replies to previously sent email, such as the Reply example program.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : Bounce file successfully opened.

EXAMPLE CODE

var BounceFile:AnsiString;

BounceFile := 'c:\mcm4d\apps\bounce.txt';

Code := mcmOpenBounce(@BounceFile[1]);

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmOpenSkip

 21

2.16 mcmOpenHeader: Open header file for processing.

SYNTAX

function mcmOpenLetter(HeaderName:AnsiString): Integer

 HeaderName : Filename of header file.

REMARKS

The mcmOpenHeader file opens the letter header file and scans for macros. An example of a header file is:

 To: `EmailAddress`

 Subject: Your Dental Appointment

Required headers are:

To: Email recipient

Subject: Email subject

Optional header lines are:

CharSet: Character set

CC: Carbon copy recipients

BCC: Blind carbon copy recipients

Attach: List of attachments

Header: User specified SMTP header

Refer to the MCM User's manual (mcm_users.pdf) for details of all headers.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : Letter file successfully opened.

EXAMPLE CODE

var HeaderFile:AnsiString;

HeaderFile := 'c:\mcm4d\apps\letter.hdr';

Code := mcmOpenLetter(@HeaderFile[1]);

EXAMPLE PROGRAMS

Send

ALSO SEE

mcmOpenLetter

http://www.marshallsoft.com/mcm_users.pdf

 22

2.17 mcmOpenLetter: Open letter file for processing.

SYNTAX

function mcmOpenLetter(LetterName:AnsiString): Integer

 LetterName : Filename of letter file.

REMARKS

The mcmOpenLetter file opens the (text or HTML) letter file, and scans the letter for macros. An example of

a letter is:

 Dear `FullName`,

 Your dental appointment is tomorrow at `AppointmentTime`.

 Sincerely,

 Dr. John H. Holliday

 PS: If you prefer that email notices not be sent, reply

 to this email with subject "REMOVE `EmailAddress`"

Called by the application code that sends the email such as the Send example program.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : Letter file successfully opened.

EXAMPLE CODE

var LetterFile:AnsiString;

LetterFile := 'c:\mcm4d\apps\letter.txt';

Code := mcmOpenLetter(@LetterFile[1]);

EXAMPLE PROGRAMS

Send

ALSO SEE

mcmOpenHeader

 23

2.18 mcmOpenList: Open recipient list file for processing.

SYNTAX

mcmOpenList(ListPathName:AnsiString): Integer

 ListPathName : Pathname of (recipient) list file.

REMARKS

The mcmOpenList file opens the recipient list file, the first line of which contains the macro substitution

string. For example,

 EmailAddress, AppointmentTime, mcmullName

 m.marshall0610@yahoo.com, 10:00 am, Mike Marshall

 p.marshall0610@yahoo.com, Noon, Paula Marshall

 l.marshall0610@yahoo.com, 2:30 pm, Lacy Marshall

Although the comma is used in the above example as the delimiter character, the semicolon, tab, carrot ^,

or tilde ~ could be used instead.

To rewind the recipient list file, pass a NULL or empty string for ListPathName.. This allows a second pass

through the list to send email when a first pass was a "merge-only" pass.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : List file successfully opened.

EXAMPLE CODE

var ListFile:AnsiString;

ListFile := 'c:\mcm4d\apps\list.txt';

Code := mcmOpenList(@ListFile[1]);

EXAMPLE PROGRAMS

Send

ALSO SEE

mcmOpenLetter

 24

2.19 mcmOpenReply: Open reply file for processing.

SYNTAX

function

mcmOpenReply(RemoveFile:AnsiString;RemoveString:AnsiString):Integer

 RemoveFile : Pathname of reply file.

 RemoveString : Reply string.

REMARKS

The mcmOpenReply function opens a reply file that is associated with the specified subject string. When

reading client replies (to previously sent email), if the subject begins with the specified string, as for example,

 REMOVE m.marshall0610@yahoo.com

then the email address following the string ("REMOVE" in the example above) is written to the reply file.

More than one reply file can be opened.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error.

EXAMPLE CODE

var

 Buffer:AnsiString;

{open file for replies on subject line "REMOVE email-address"}

Code := mcmOpenReply(@RemoveFile[1], @RemoveString[1])

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmOpenSkip and mcmOpenBounce

 25

2.20 mcmOpenSkip: Open skip file for processing.

SYNTAX

function mcmOpenSkip(SkipPathName:AnsiString): Integer

 SkipPathName : Pathname of skip file.

REMARKS

The mcmOpenSkip function opens a file containing email addresses of recipients to which email should not

be sent, even if the email address appears in the list of recipients.

Typically, skip files are either a list of email addresses that were previously not deliverable or addresses of

recipients who replied to previously sent email with one of the string specified in mcmOpenReply.

More than one skip file can be opened.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

var BounceFile:AnsiString;

BounceFile := 'c:\mcm4d\apps\bounce.txt';

{Open file containing addresses of undeliverable email}

Code := mcmOpenSkip(@BounceFile[1])

EXAMPLE PROGRAMS

SendMail

ALSO SEE

mcmOpenReply and mcmOpenBounce

 26

2.21 mcmPop3Close: Close POP3 connection.

SYNTAX

function mcmPop3Close(): Integer

REMARKS

The mcmPop3Close program closes the connection to the POP3 server.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

{close POP3 connection}

mcmPop3Close()

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmPop3Connect

 27

2.22 mcmPop3Connect: Connect to POP3 server.

SYNTAX

function mcmPop3Connect(Server:AnsiString; Port:Integer;

 User:AnsiString; Pass:AnsiString):Integer

 Server : POP3 server name or IP address.

 Port : POP3 port (normally 110).

 User : POP3 user name.

 Pass : POP3 password.

REMARKS

The mcmPop3Connect function connects to the specified POP3 server for the purpose of (1) reading replies

from servers reporting than email was undeliverable and (2) reading replies from recipients.

Once connected, the number of messages in the POP3 account is returned.

Note: mcmPop3Connect and mcmSmtpConnect should not be called in the same program.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 = 0 : No messages on the server.

 > 0 : The number of messages on the server.

EXAMPLE CODE

' connect to POP3 server

POP3_Server := 'mail.hiwaay.net';

POP3_User := 'username';

POP3_Pass := 'secret';

POP3_Port := 110;

Code := mcmPop3Connect(@POP3_Server[1], POP3_Port, @POP3_User[1],

@POP3_Pass[1])

EXAMPLE PROGRAMS

Reply

ALSO SEE

mcmPop3Close

 28

2.23 mcmReadReply: Read next email from POP3 server.

SYNTAX

function mcmReadReply(UserBuf:AnsiString; Flags:Integer):Integer

 UserBuf : Reply buffer.

 Flags : Delete Codes.

REMARKS

The mcmReadReply function reads the next email from the POP3 server, copying the subject to the 'UserBuf'

buffer.

The email read is classified as one of three types:

(1) Email from servers indicating that the email was undeliverable.

(2) Email from recipients who have responded to one of the previous specified reply strings.

(3) All other email.

Delete Codes specify if the email of the type specified in the above paragraph is to be deleted.

 MCM_DELETE_BOUNCED 1

 MCM_DELETE_MATCHED 2

 MCM_DELETE_OTHER 4

The above Delete Codes can be added together to expand the messages deleted. For example, to specify that

only type 1 (bounced) and type 2 (recognized replied to) emails are to be deleted, but not others, set 'Flags' to

3. Hence, Flag = 3 will delete failure (bounced) email and recognized (matched) replies but keep all other

messages.

If no messages are to be deleted, use Flags = 0.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 = 0 : No reply string matches.

 > 0 : Matched reply string (1 to 24).

 = 999 : Email was undeliverable.

EXAMPLE CODE

var

 SubjectBuffer:AnsiString;

 DeleteCode : Integer;

DeleteCode := MCM_DELETE_BOUNCED + MCM_DELETE_MATCHED;

Code := mcmReadReply(@SubjectBuffer[1], DeleteCode)

EXAMPLE PROGRAMS

Reply.

ALSO SEE

 29

2.24 mcmRelease: Close down MCM.

SYNTAX

function mcmRelease():Integer

REMARKS

The mcmRelease function closes down all MarshallSoft Client Mailer (MCM) processing and should be the

last MCM function called.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

mcmRelease()

EXAMPLE PROGRAMS

Send and Reply

 30

2.25 mcmSearch: Searches all skip files for specified string.

SYNTAX

function mcmSearch(Text:AnsiString):Integer;

 Text : String used in searching skip files

REMARKS

The mcmSearch function searches all skip files for the specified string. The skip file number (1,2,3…) is

returned corresponding to the first skip file found that contains the string, or -1 is the string is not found in any

of the skip files.

For example, the SendMail example program opens 3 skips files: bounce.txt, remove.txt, and skip.txt. If the

search string is found in file remove.txt, then mcmSearch will return 2 since remove.txt was the second skip

file opened in SendMail.

RETURNS

 -1 : Not found.

 >= 0 : Skip file number (1,2,3,…)

EXAMPLE CODE

var Code : Intreger;

var Text : AnsiString;

Text := 'marshall@yahoo.com';

Code := mcmSearch(Text);

EXAMPLE PROGRAMS

None.

 31

2.26 mcmSendMail: Sends merged mail.

SYNTAX

function mcmSendMail(): Integer

REMARKS

The mcmSendMail function sends the email created by calling mcmMergeNext.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 > 0 : No error

EXAMPLE CODE

' send letter to recipient

Code := mcmSendMail()

EXAMPLE PROGRAMS

Send

 32

2.27 mcmSetInteger : Sets numeric parameter for MCM processing.

SYNTAX

function mcmSetInteger(ParamName:Integer; ParamValue:Integer):Integer

 ParamName : Parameter number.

 ParamValue : Parameter value.

REMARKS

The mcmSetInteger functions sets the specified Integer parameter

MCM_ALLOW_EMPTY_FIELDS : Allows (1) or disallows (0) empty fields in the list of recipients, with the

exception of the first field, which is reserved for the recipient's email address (since an email address must

always be present). The default is 0 (empty fields not allowed).

MCM_SET_DEBUG_LEVEL : Changes the diagnostic debug level (initially set by mcmAttach) to

MCM_DEBUG_OFF, MCM_DEBUG_LOW, or MCM_DEBUG_HIGH.

MCM_SET_DUPLICATE_DETECT : Enables (1) or disables (0) detection of duplicate email addresses in the

recipient list. Does not affect operation of skip (exclusion) lists. The default is enabled (1).

MCM_SET_CHANNEL_DIVISOR : Sets the channel divisor D (default = 4) such that the number of channels

N used is reduced so that (N <= L / D) where L = the number of lines in the recipient list. In order to take

affect at runtime, mcmOpenList must be called before mcmOpenLetter.

MCM_SET_MACRO_DELIMITER : Specifies the macro substitution delimiter in the letter to be sent. Choose

percent %, blackslash \, or backquote ` (default).

MCM_AUTO_LOAD_HEADER_FILE : Sets a flag so that the header file will be automatically loaded when

mcmOpenLetter is called, provided that the header file has the same name as the letter file except for

extension ".hdr" rather than ".txt" or ".htm". Avoid having to call mcmOpenHeader.

MCM_SET_SMTP_PROTOCOL : Sets the SMTP protocol to 'ParamValue', which should be one of

SMTP_AUTHENTICATE_CRAM, SMTP_AUTHENTICATE_LOGIN, or SMTP_AUTHENTICATE_PLAIN.

Required by some SMTP servers. See \MCM4D\SSL\SSL_SERVERS.TXT.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 >= 0 : Parameter value set (no error).

EXAMPLE CODE

{set debug level to MCM_DEBUG_HIGH}

Code := mcmSetInteger(MCM_SET_DEBUG_LEVEL, MCM_DEBUG_HIGH)

EXAMPLE PROGRAMS

 None.

 33

2.28 mcmSetProxySSL: Set SSL Proxy Parameters

SYNTAX

function mcmSetProxySSL(ProxyCode, ProxyFlags : Integer;

 ProxyDir, ProxyCert, ProxyExe : AnsiString;

 ProxyPort : Integer) : Integer;

 ProxyCode : proxy code (reserved, set to 0)

 ProxyFlags : proxy server flags (1=icon on taskbar)

 ProxyDir : proxy directory (on this machine)

 ProxyCert : proxy certificate (STUNNEL.PEM) - file or path

 ProxyExe : proxy executable (STUNNEL.EXE) - file or path

 ProxyPort : proxy port

REMARKS

The mcmSetProxySSL program sets parameters for the proxy server (Stunnel) and must be called before

connecting to any SMTP or POP3 server that requires SSL.

For details on using Stunnel, see the section "Using Stunnel" in the MCM User's Manual mcm4d_usr.pdf in

the DOCS directory or online at http://www.marshallsoft.com/stunnel.htm

Set ProxyFlags = 1 if an icon is to be placed on the task bar.

Set ProxyDir to the path used to write the Stunnel configuration and log files.

Set ProxyCert to the filename or pathname of the X509 certificate (in PEM format).

Set ProxyExe to the proxy executable filename or pathname.

Set ProxyPort to the proxy to be used to communicate with the proxy server, or 0 to disable the proxy

server. Any unused port can be specified.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 >= 0 : No error.

EXAMPLE CODE

ProxyDir := 'c:\mcm4d\ssl';

ProxyCert := 'c:\mcm4d\ssl\stunnel.pem';

ProxyExe := 'c:\mcm4d\ssl\stunnel.exe';

Code := mcmSetProxySSL(0,1,@ProxyDir[1],@ProxyCert[1],@ProxyExe[1],8801);

EXAMPLE PROGRAMS

Send

http://www.marshallsoft.com/mcm_users.pdf
http://www.marshallsoft.com/stunnel.htm

 34

2.29 mcmSetString: Sets string for MCM processing.

SYNTAX

function mcmSetString(ParamName:Integer;ParamString:AnsiString):Integer

 ParamName : Parameter number.

 ParamString : Parameter string.

REMARKS

The mcmSetString function sets a string parameter.

MCM_SET_FROM_ADDRESS : Sets the "From:" address on subsequent outgoing email (initially set by

mcmSmtpConnect).

MCM_SET_CC_ADDRESS : Sets the "CC:" address string for all outgoing email. Addresses must be enclosed

in '<' and '>' brackets, as in "<someone@comcast.net>".

MCM_SET_BCC_ADDRESS: Sets the "BCC:" address string for all outgoing email. Addresses must be

enclosed in '<' and '>' brackets, as in "<someone@comcast.net>".

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 >= 0 : Length of parameter string (no error).

EXAMPLE CODE

var FromAddr:AnsiString;

FromAddr := 'm.marshall0610@yahoo.com';

{set "From:" address}

Code := mcmSetString(MCM_SET_FROM_ADDRESS, @FromAddr[1]);

EXAMPLE PROGRAMS

 None.

 35

2.30 mcmSleep: Sleeps specified milliseconds.

SYNTAX

function mcmSleep(MilliSecs:Integer):Integer

 MilliSecs : Milliseconds to sleep.

REMARKS

The mcmSleep function sleeps the number of specified milliseconds. This function is the same as the

Windows API Sleep function.

RETURNS

 MilliSecs

EXAMPLE CODE

{sleep 3 seconds}

Code := mcmSleep(3000)

EXAMPLE PROGRAMS

Send and Reply.

 36

2.31 mcmSmtpClose: Close SMTP server connection.

SYNTAX

function mcmSmtpClose():Integer

REMARKS

The mcmSmtpClose function closes all SMTP channels, and will not return until all channels are closed.

Before calling mcmSmtpClose, the function mcmGetInteger(MCM_GET_CHANNEL_STATUS) should

be called repeatedly until it returns 0, indicating that all channels have finished sending. See the SendMail

example program.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 >= 0 : No error.

EXAMPLE CODE

' close all connections to SMTP server

mcmSmtpClose()

EXAMPLE PROGRAMS

Send

ALSO SEE

mcmPop3Close

 37

2.32 mcmSmtpConnect: Connect to SMTP server.

SYNTAX

function mcmSmtpConnect(Server:AnsiString; Port:Integer;

 User:AnsiString; Pass:AnsiString;

 From:AnsiString;

 ReOpen:Integer; Delay:Integer):Integer;

 Server : SMTP server name of IP address.

 Port : SMTP port (normally 25 or 587)

 User : SMTP user name (SMTP Authentication only)

 Pass : SMTP password (SMTP Authentication only)

 From : Email address of sender.

 ReOpen : Number of emails before closing & reopening.

 Delay : Number of seconds to delay before reopening connection.

REMARKS

The mcmSmtpConnect function connects to the specified SMTP server using the number of channels

authorized by the MCM license, but not more than the maximum that was passed to the mcmAttach function.

The "well known port" for SMTP is 25. However, most servers require that port 587 be used, reserving port 25

only for other known SMTP servers.

If the SMTP server requires "SMTP Authentication", the user and password must be specified. Otherwise pass

the empty string Chr(0).

The ReOpen value specifies the number of emails sent (by each channel) before closing and reopening the

connection, and is normally used with servers that set a maximum number of emails that can be sent. Pass 0 to

disable the reopen feature.

The Delay value is the number of seconds to delay after closing the connection (ReOpen > 0 was specified)

before reopening it . Pass 0 to specify no delay.

RETURNS

 < 0 : Error (see Section 3.0 MCM Error List)

 >= 0 : No error.

EXAMPLE CODE

SMTP_Server = "mail.hiwaay.net"

SMTP_User = Chr(0)

SMTP_Pass = Chr(0)

SMTP_Port = 587

' connect to SMTP server on port 587

Code := mcmSmtpConnect(@SMTP_Server[1], SMTP_Port, @SMTP_User[1],

 @SMTP_Pass[1], @SMTP_From[1], 0, 0)

EXAMPLE PROGRAMS

Send

 38

2.33 mcmStartProgram: Starts External Program.

SYNTAX

 function mcmStartProgram(CommandLine:AnsiString):Integer ;

 CommandLine : (P) Command line for external program.

REMARKS

The mcmStartProgram function starts the specified external program. The command line contains the

pathname of the executable plus any additional command line arguments, if any. mcmStartProgram can

start any Windows program.

The primary purpose of mcmStartProgram is to start external programs such as proxy servers.

C/C++ Example

 var Stunnel : AnsiString;

 var ProcessID : Integer;

 Stunnel := 'c:\stunnel\stunnel.exe c:\stunnel\SMTPgmail.txt';
 ' Starting STUNNEL

 ProcessID := mcmStartProgram(Stunnel);

RETURNS

 Return = -1 : Cannot start process.

 Return > 0 : Process ID

ALSO REFER TO

mcmKillProgram

 39

2.34 mcmStatistics: Get runtime statistics.

SYNTAX

function mcmStatistics(ParmName:Integer):Integer

 ParamName : Parameter number.

REMARKS

The mcmStatistics function returns the runtime statistic corresponding to 'ParamName' .

MCM_STAT_TOTAL_RECIPIENTS : Total number of recipients

MCM_STAT_BRACKETED_ADDRESSES : Number of bracketed addresses

MCM_STAT_INVALID_ADDRESSES : Number of invalid addresses

MCM_STAT_DUPLICATE_ADDRESSES : Number of duplicate addresses

MCM_STAT_WITH_BAD_ATTACHMENT : Number of bad attachments

MCM_STAT_SKIPPED_ADDRESSES : Number of skipped addresses

MCM_STAT_WITH_UNKNOWN_CHARSETS : Number of unknown char sets

MCM_STAT_AVG_SEND_TIME : The average time (milliseconds) to send each email.

MCM_STAT_AVG_CONNECT_TIME : The average time (milliseconds) to connect to the server.

RETURNS

The selected runtime statistic.

EXAMPLE CODE

DupAddresses := mcmStatistics(MCM_STAT_DUPLICATE_ADDRESSES);

Display(Format('%d duplicate addresses seen',[DupAddresses]))

EXAMPLE PROGRAMS

Send

ALSO SEE

mcmGetInteger and mcmGetInteger2

 40

2.35 mcmUtility: MCM Utility Function

SYNTAX

function mcmUtility(ParamName:Integer;ParamString:AnsiString):Integer;

 ParamName : Parameter name.

 ParamString : Parameter string.

REMARKS

The mcmUtility function can only be called before calling any other MCM functions.

ParamName ParamString Returns

MCM_GET_FILE_LINE_COUNT file name # lines in file.

RETURNS

See above.

EXAMPLE CODE

ListFile := 'list.txt';

Lines := mcmUtility(MCM_GET_FILE_LINE_COUNT, @ListFile[1]);

EXAMPLE PROGRAMS

Send

 41

2.36 mcmWriteToLog: Write to log file.

SYNTAX

function mcmWriteToLog(Text:AnsiString):Integer

 String : Text to write to the log file.

REMARKS

The mcmWriteToLog function writes the specified string to the MCM log file. Note that mcmWriteToLog

cannot be called until after mcmAttach is called.

RETURNS

The length of the passed string.

EXAMPLE CODE

var Text : AnsiString;

Text := 'Send Example Program ';

mcmWriteToLog(@Text[1]);

EXAMPLE PROGRAMS

Send and Reply

 42

3.0 MCM Error List

The numerical list of MCM errors follows:

 -1: End-of-File

-101: Cannot set SMTP port

-102: Cannot connect to SMTP server

-103: Invalid key code

-104: Send mail fails

-105: Cannot set SMTP user name

-106: Cannot set SMTP password

-107: Invalid email address

-121: Cannot connect to both SMTP and POP3

-141: Cannot set POP3 port

-142: Cannot connect to POP3 server

-171: Too many reply files

-201: Not authorized (internal error).

-202: First line of letter must start with 'To:'

-203: Second line of letter must start with 'Subject:'

-204: Body of email is missing

-205: Cannot open MCM bin-file

-206: Cannot read MCM bin-file

-207: Invalid bin-file format

-208: Corrupted bin-file

-210: Max recipient list size exceeded in evaluation version

-211: Cannot allocate memory for letter buffers

-212: TCP/TP running on Ethernet

-214: Path to MCM directory cannot be null

-215: Must specify path to MCM directory

-216: No such macro

-217: Maximum skip files exceeded

-218: Maximum reply files exceeded

-219: No such parameter

-220: No such header

-221: Unknown CharSet

-222: Buffer too small

-223: No channels allocated (by mcmAttach)

-224: All channels have been disabled

-225: Evaluation version expired

-226: String too long. Expect <= 256

-227: String too long. Expect <= 1000

-228: Bad email address. Expect '<name@domain>'

-229: Not authorized to use this version of MCM32.DLL

-230: File does not exist

-231: (not used)

-232: Illegal letter delimiter. Expecting % \ `

-233: Too many addresses. Limit is one address

-234: Brackets <..> not allowed in email addresses

-235: More than one 'To:' header seen

-236: Attachment buffer is full

-237: Missing header file

-238: Must have at least one recipient

-239: SMTP connection required

-240: POP3 connection required

-243: Expecting text file (with extension '.txt')

 43

-302: lstInit not called

-303: Cannot open list file

-304: No such string

-305: Bad delimiter. Expecting commas or tabs

-306: Cannot determine delimiter on macro line

-307: Cannot determine delimiter on entry line

-308: Delimiter character must match delimiter on macro line

-309: Number delimiters must match number on macro line

-310: List buffer is too small

-311: Missing entry in recipient-list

-312: Recipient list string is too long

-351: Cannot start SMTP thread

-352: Maximum allowed channels exceeded

-353: No channels specified!

-354: mcmSmtpClose already called

-355: Not connected to servers

-401: End-of-File (letter)

-402: ltrInit not called

-403: Cannot open letter file

-404: Cannot allocate memory for (raw) letter

-405: Letter file not opened

-406: Macro not closed

-408: Macro too big

-409: Illegal character inside macro

-410: Macro not closed before end-of-line

-411: Isolated macro definition character (percent sign)

-412: Error reading letter file

-413: Macro cannot contain space characters

-414: Macro not found

-415: Unknown file extension: Expecting .htm, .txt, or .rtf

-416: Cannot open (letter) header file

-451: Memory mutex operation failed

-452: Timed out waiting for memory mutex

-453: No such buffer exists

-454: bufInit not called

-455: Timed out waiting for free buffer

-501: Letter has not been loaded

-502: Macro not found in list macro line

-503: No such field in on list entry line

-504: Buffer overflow

-505: String table key too large (max = 40 chars)

-506: String table replacement text too large (max = 256 chars)

-507: String table overflow

-541: Supermacro not closed

-542: Illegal character in supermacro

-543: Supermacro too big

-544: Supermaccro table lookup fails

-545: Error reading INCLUDE file

-546: Include file too large (> 1024 chars)

-602: logInit not called

-701: Max files exceeded

-702: Cannot allocate memory

-703: No such file

-704: No such file index

-705: String not found

-801: No space remaining in file table

-802: No such file (bad file table entry)

 44

-803: File not open

-804: File write error

-806: Cannot open file

-807: Cannot create file

-902: Cannot allocate memory

-903: Slot table overflow

-951: MCM aborted

-952: Bad key code

-953: Evaluation version expired

-954: Bad edition code

-955: Must call mcmAttach first

