
 1

Client / Server

Communications

Reference Library

(CSC_REF)

Version 7.1

January 11, 2018

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2018

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815 USA

web : www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 General Remarks Page 3

 1.2 Documentation Set Page 4

 1.3 Declaration Files Page 4

 1.4 Language Notes Page 5

2 CSC Functions Page 6

 2.1 cscAcceptConnect Page 6

 2.2 cscAttach Page 7

 2.3 cscAwaitConnect Page 8

 2.4 cscAwaitData Page 9

 2.5 cscByteToShort Page 10

 2.6 cscChallenge Page 11

 2.7 cscClient Page 12

 2.8 cscClientExt Page 13

 2.9 cscClose Page 14

 2.10 cscConnectMessage Page 15

 2.11 cscCreateUDP Page 16

 2.12 cscCryptoGetData Page 17

 2.13 cscCryptoGetFile Page 18

 2.14 cscCryptoGetFileExt Page 19

 2.15 cscCryptoGetPacket Page 20

 2.16 cscCryptoPutData Page 21

 2.17 cscCryptoPutFile Page 22

 2.18 cscCryptoPutFileExt Page 23

 2.19 cscCryptoPutPacket Page 24

 2.20 cscDataCRC Page 25

 2.21 cscDataMessage Page 26

 2.22 cscErrorText Page 27

 2.23 cscFileCRC Page 28

 2.24 cscFileLength Page 29

 2.25 cscFillRandom Page 30

 2.26 cscGetData Page 31

 2.27 cscGetFile Page 32

 2.28 cscGetFileExt Page 33

 2.29 cscGetInteger Page 35

 2.30 cscGetPacket Page 36

 2.31 cscGetString Page 37

 2.32 cscGetUDP Page 38

 2.33 cscIsConnected Page 39

 2.34 cscLaunch Page 40

 2.35 cscMakeDotted Page 41

 2.36 cscMakeDotted4 Page 42

 2.37 cscMulticast Page 43

 2.38 cscNetToHost16 Page 44

 2.39 cscNetToHost32 Page 45

 2.40 cscPutData Page 46

 2.41 cscPutFile Page 47

 2.42 cscPutFileExt Page 48

 2.43 cscPutPacket Page 49

 2.44 cscPutUDP Page 50

 2.45 cscReadSize Page 51

 2.46 cscRelease Page 52

 2.47 cscResolve Page 53

 2.48 cscResponse Page 54

 2.49 cscServer Page 55

 2.50 cscSetInteger Page 56

 2.51 cscSetString Page 57

 2.52 cscShortToByte Page 58

 2.53 cscSleep Page 59

 2.54 cscSystemTics Page 60

 2.55 cscTestDotted Page 61

2 CSC Error Return Code List Page 58

 3

1 Introduction

The Client / Server Communications Library (CSC) is a component library of functions used to create

server and client programs that can communicate with each other across any TCP/IP network such as the

Internet or a private network (intranet or LAN [local area net]). Refer to the CSC User’s (CSC_USR.PDF)

for information on the CSC SDK. The Client/Server Communication Library will work with 32-bit and

64-bit Windows: Windows XP through Windows 10.

1.1 General Remarks

All functions return an integer code. Negative values are always an error. See "CSC Error Codes" in

Section 3. Non-negative return codes are never an error.

Note that the cscErrorText function is used to get the text message associated with any error code.

Each function argument is marked as:

 (I) : 4-byte integer (Win32/Win64).

 (S) : 2-byte short integer (Win32/Win64).

 (P) : 4-byte pointer (Win32/Win64).

Refer to the declaration files (see Section 1.3 below) for the exact syntax of each CSC function. Also note

that the example programs show exactly how CSC functions are called.

All network functions are TCP unless specifically noted as for UDP.

For the latest version of the CSC software, see
http://www.marshallsoft.com/client-server-communication.htm

http://www.marshallsoft.com/csc_usr.pdf
http://www.marshallsoft.com/client-server-communication.htm

 4

1.2 Documentation Set

The complete set of documentation is provided in Adobe PDF format. This is the third manual

(CSC_REF.PDF) in the set.

 CSC_4x Programmer’s Manual (CSC_4x.PDF)

 CSC User’s Manual (CSC_USR.PDF)

 CSC Reference Manual (CSC_REF.PDF)

The CSC_4x Programmer’s Manual is the programming language specific manual. All language

dependent programming issues including installation, compiling and example programs are discussed in

this manual. The language specific manuals are as follows:

[NAME] [DESCRIPTION]

CSC_4C : CSC Programmer's Manual for C/C++

CSC_4VB : CSC Programmer's Manual for Visual Basic

CSC_4D : CSC Programmer's Manual for Delphi

CSC_4FP : CSC Programmer's Manual for Visual FoxPro

CSC_4DB : CSC Programmer's Manual for Visual dBase

CSC_4XB : CSC Programmer's Manual for XBase++

The CSC User’s Manual (CSC_USR.PDF) discusses client/server programming issues. License and

purchase information is also provided. Read this manual after reading the CSC Programmer’s Manual.

The CSC Reference Manual (CSC_REF.PDF) contains details on each individual CSC function.

All documentation can also be accessed online at http://www.marshallsoft.com/client-

server-communication.htm

1.3 Declaration Files

The exact syntax for calling CSC functions is specific to the host language (C/C++, Delphi, VB, etc.) and

is defined for each language in the “CSC declaration files”. Each Client/Server Communications Library

product comes with the appropriate declaration file for the supported language. For example,

CSC4C C/C++, C++ .NET CSC.H

CSC4VB Visual Basic CSC32.BAS

 VB.NET CSC32.VB

 VBA (EXCEL,ACCESS,etc.) CSC32.BAS

CSC4D Borland Delphi CSC32.PAS

CSC4FP Visual FoxPro CSC32.FOX

CSC4XB Xbase++ CSC32.CC

CSC4DB Visual dBase CSC32.CH

We also have declaration files (and some example programs) for PowerBASIC and Fujitsu COBOL.

http://www.marshallsoft.com/csc_4c.pdf
http://www.marshallsoft.com/csc_4vb.pdf
http://www.marshallsoft.com/csc_4d.pdf
http://www.marshallsoft.com/csc_4fp.pdf
http://www.marshallsoft.com/csc_4db.pdf
http://www.marshallsoft.com/csc_4xb.pdf
http://www.marshallsoft.com/csc_usr.pdf
http://www.marshallsoft.com/csc_ref.pdf
http://www.marshallsoft.com/client-server-communication.htm
http://www.marshallsoft.com/client-server-communication.htm

 5

1.4 Language Notes

All language versions of CSC include the example program CSCVER. Refer to this program and the

declaration file as defined in Section 1.3 above to see how CSC functions are called. The CSCVER

program is also the first program that should be compiled and run.

The best way to see how a function is called is to find it used in one of the example programs. All CSC

functions are used in one or more examples.

See “Using CSC with Supported Languages” in the CSC User’s Manual (CSC_USR.PDF)

1.4.1 C/C++/C#

Project files and/or makefiles supplied for the example programs. CSC supports all 32-bit and 64-bit

versions of Microsoft Visual C/C++, Visual C++ .NET and Visual C#, and 32-bit Borland C/C++, Borland

C++ Builder, Watcom C/C++, Win32-LCC, Digital Mars, and MinGW C++.

1.4.2 Delphi

Functions defined in the Delphi Unit CSCW.PAS begin with "f" rather than "csc".

All versions of 32-bit and 64-bit Delphi through Delphi XE4 are supported.

1.4.3 Visual Basic (and VB.NET)

All versions of Visual Basic are supported through VB.NET (Visual Studio 2012).

1.4.4 Visual FoxPro

All strings passed to CSC functions must be prefixed with the ‘@’ character. All versions of 32-bit Visual

FoxPro are supported.

1.4.5 Visual dBase

CSC works with all versions of Visual dBase.

1.4.6 Xbase++

Functions defined for Xbase++ begin with 'X'. All strings passed to CSC functions must be prefixed with

the '@' character.

http://www.marshallsoft.com/csc_usr.pdf

 6

2 CSC Functions

2.1 cscAcceptConnect :: Accept Connection from Client.

SYNTAX

cscAcceptConnect(vSock)

 vSock : (I) Virtual (listener) socket number.

REMARKS

This function is used by the server to accept a connection from a client. cscAcceptConnect returns the

(virtual) socket number that must be used in all subsequent calls to CSC functions that have a socket

argument. Note that cscAcceptConnect can only be used in a server application.

EXAMPLE (C/C++ and VB)

Code = cscAcceptConnect(vSock)

 vSock : (I) Virtual (listener) socket number.

RETURNS

< 0 : Error. See error list.

>= 0 : Virtual data socket.

 7

2.2 cscAttach :: Initializes the CSC DLL.

SYNTAX

cscAttach(DataSocks, ListenSocks, KeyCode)

 DataSocks : (I) Number of (data) virtual communications sockets.

 ListenSocks : (I) Number of (listen) virtual communications sockets.

 KeyCode : (I) Key code.

REMARKS

The cscAttach function must be the first CSC function called, and is used to pass the keycode (assigned

when the library is purchased) and the number of sockets to allow for both data and for listening for new

connections.

For client applications, ‘DataSocks’ is the number of servers that the clients wants to connect to

concurrently. This value is normally one. ‘ListenSocks’ is always zero for client applications.

For server applications, ‘DataSocks’ is the number of concurrent data connections (to clients) that are to be

supported concurrently, and ‘ListenSocks’ is the number of different ports that a server wants to be able to

accept connections to concurrently. This value is normally one.

EXAMPLE (C/C++ and VB)

 // allow 1 data port and no listening ports, with keycode 0

 Code = cscAttach(1, 0, 0)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 8

2.3 cscAwaitConnect :: Wait for Connection Attempt from Client.

SYNTAX

cscAwaitConnect(vSock, Timeout)

 vSock : (I) Virtual (listen) socket number.

 Timeout : (I) Timeout value in milliseconds.

REMARKS

This cscAwaitConnect function is used by a server program to wait a maximum specified time (in

milliseconds) for a connection to be accepted from a client program.

EXAMPLE (C/C++)

 if(cscAwaitConnect(ListenSock, 1000))

 {// accept connection from client

 DataSock = cscAcceptConnect(ListenSock);

EXAMPLE (VB)

 if cscAwaitConnect(ListenSock, 1000) <> 0 Then

 'accept connection from client

 DataSock = cscAcceptConnect(ListenSock)

RETURNS

Returns TRUE : Client attempting to connect.

Returns FALSE : No connection attempt detected.

 9

2.4 cscAwaitData :: Wait for Incoming Data.

SYNTAX

cscAwaitData(vSock, Timeout)

 vSock : (I) Virtual (data) socket number.

 Timeout : (I) Timeout value in milliseconds.

REMARKS

This cscAwaitData function is used to wait a specified time (in milliseconds) for incoming data from

either a client or a server application.

This function should normally be called before calling cscGetData, cscGetFile, or cscGetPacket.

EXAMPLE (C/C++)

 char Buffer[128];

 // wait (up to 2 seconds) for incoming data

 if(cscAwaitData(DataSock, 2000))

 {// read data

 Code = cscGetData(DataSock, (char *)Buffer, 128);

EXAMPLE (VB)

 Dim Buffer As String * 128

 ' wait (up to 2 seconds) for incoming data

 if cscAwaitData(DataSock, 2000) <> 0 Then

 ' read data

 Code = cscGetData(DataSock, Buffer, 128)

RETURNS

Returns TRUE : Data is ready to be read.

Returns FALSE : No data is ready.

 10

2.5 cscByteToShort :: Converts 8-bit Character Buffer to 16-bit

SYNTAX

cscByteToShort(Buffer)

 Buffer : (P) character buffer

REMARKS

The cscByteToShort function converts the (null terminated) character buffer 'Buffer' from 8-bit ASCII

characters to 16-bit Unicode ASCII characters.

The buffer must be null terminated (last character is a hex 00) and the buffer must be at least twice the size

(in bytes) of the character string (since 16-bit characters require twice the space as 8-bit characters).

This function is only necessary when working with 16-bit Unicode ASCII characters in Visual C# and

Delphi 2005/2007/2009.

RETURNS

None.

EXAMPLE (C#)

Refer to the Visual C# example ClientCS.csproj

 char[] UnsafeBuffer = new char[128];

 // get the registration string

 fixed (char* pBuffer = UnsafeBuffer)

 Code = cscGetString(-1, CSC_GET_REGISTRATION, pBuffer, 51);

 if(Code>0)

 {// convert (null terminated) UnsafeBuffer[] to 16-bit chars (unicode)

 fixed (char* pBuffer = UnsafeBuffer)

 cscByteToShort(pBuffer);

 }

ALSO SEE

cscShortToByte

 11

2.6 cscChallenge :: Construct Challenge String

SYNTAX

cscChallenge(Buffer)

 Buffer : (P) Buffer into which the challenge string is copied.

REMARKS

The cscChallenge function is used to construct a random 8-byte challenge string to be used to challenge

the client before continuing with the connection.

The purpose of the cscChallenge and cscResponse functions is to create a challenge / response protocol in

order to defeat hackers who may try to connect to your server.

Also see cscResponse, which computes the response to the challenge string.

EXAMPLE (C/C++)

 char Challenge[9]; // challenge string

 // create random 8-digit number

 Code = cscChallenge((char *)Challenge);

EXAMPLE (VB)

 Dim Challenge As String * 9

 ' create random 8-digit number

 Code = cscChallenge(Challenge)

RETURNS

Returns the length of the challenge string, which is always 8.

 12

2.7 cscClient :: Starts the Client.

SYNTAX

cscClient(ServerName, ServerPort)

 ServerName : (P) Server name.

 ServerPort : (I) Server port.

REMARKS

The cscClient is function is used to start the client which attempts to connect to the server and port

specified. Note that the server must already be running before a connection can be established. cscClient

returns the (virtual) socket number that must be used in all subsequent calls to CSC functions that have a

socket argument. Note that cscClient can only be used in a TCP client application.

EXAMPLE (C/C++)

 char *HostName = "10.0.0.6";

 short HostPort = 5001;

 int DataSock;

 // attempt to connect to server

 DataSock = cscClient(HostName, HostPort);

EXAMPLE (VB)

 Dim HostName As String

 Dim HostPort As Integer

 Dim DataSock As Integer

 HostName = "10.0.0.2"

 HostPort = 5001

 ' attempt to connect to server

 DataSock = cscClient(HostName, HostPort)

RETURNS

>= 0 : Virtual (data) socket number

else : Error (See error list)

 13

2.8 cscClientExt :: Starts the Client.

SYNTAX

cscClient2(ServerName, ServerPort, LocalName)

 ServerName : (P) Server name.

 ServerPort : (I) Server port.

REMARKS

The cscClient2 is function is used to start the client which attempts to connect to the server and port

specified, binding the data socket to the IP address.

Note that the server must already be running before a connection can be established. cscClientExt returns

the (virtual) socket number that must be used in all subsequent calls to CSC functions that have a socket

argument. Note that cscClientExt can only be used in a TCP client application.

EXAMPLE (C/C++)

 char *HostName = "10.0.0.6";

 char *LocalName = "10.0.0.14";

 short HostPort = 5001;

 int DataSock;

 // attempt to connect to server

 DataSock = cscClient(HostName, HostPort, LocalName);

EXAMPLE (VB)

 Dim HostName As String

 Dim LocalName As String

 Dim HostPort As Integer

 Dim DataSock As Integer

 HostName = "10.0.0.2"

 LocalName = "10.0.0.14";

 HostPort = 5001

 ' attempt to connect to server

 DataSock = cscClient2(HostName, HostPort, LocalName)

RETURNS

>= 0 : Virtual (data) socket number

else : Error (See error list)

 14

2.9 cscClose :: Closes a Connection.

SYNTAX

cscClose(vSock)

 vSock : (I) Virtual socket number.

REMARKS

The cscClose function closes a connection previously opened. Call this function only to close an open

connection.

EXAMPLE (C/C++ and VB)

 Code = cscClose(vSock)

RETURNS

 < 0 : Error. See error list.

>= 0 : No error.

 15

2.10 cscConnectMessage :: Sends Windows Message (on Connect).

SYNTAX

cscConnectMessage(Handle, vSock)

 Handle : (I) Windows Handle

 vSock : (I) Virtual listen socket.

 Message : (I) Message (usually WM_USER)

REMARKS

The cscConnectMessage function sends a Windows message to the window with handle 'Handle' when a

connection from a client is ready to be accepted.

Refer to the windows server example programs.

EXAMPLE (C/C++)

 // Send WM_USER message when connection is ready to connect

 cscConnectMessage(hMainWnd, ListenSock, WM_USER);

EXAMPLE (VB)

 Const WM_LBUTTONDOWN = &H201

 ' send WM_LBUTTONDOWN message when connection is ready to connect

 Code = cscConnectMessage(Client.bReady.hWnd, ListenSock, WM_LBUTTONDOWN)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 16

2.11 cscCreateUDP :: Creates UDP Socket.

SYNTAX

cscCreateUDP(LocalPort, LocalHost)

 LocalPort : (I) Local port

 LocalHost : (I) Local host name.

REMARKS

The cscCreateUDP function creates a UDP socket that is used by cscGetUDP and cscPutUDP functions

only. The UDP socket is closed with cscClose.

Refer to the uEcho_S (UDP server) and uEcho_C (UDP client) example programs.

EXAMPLE (C/C++)

 // Create UDP socket

 vSock = cscCreateUDP(ECHO_PORT, (char *)"127.0.0.1");

EXAMPLE (VB)

 ' Create UDP socket

 LocalHost = "127.0.0.1"

 vSock = cscCreateUDP(ECHO_PORT, LocalHost)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 17

2.12 cscCryptoGetData :: Receives Encrypted Data.

SYNTAX

cscCryptoGetData(vSock, Buffer, BufLen, PadChars, PadLen)

 vSock : (I) Virtual (data) socket.

 Buffer : (P) Buffer into which to copy bytes.

 BufLen : (I) Length of above buffer.

 PadChars: (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoGetData function is used to receive encrypted data from an established connection. All

available data is copied to ‘Buffer’ up to a maximum of ‘BufLen’. cscCryptoGetData never waits for

data.

The received bytes in ’Buffer’ have been XOR’ed with the bytes in ’PadChars’ . If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 char Temp[128];

 // read data (up to 128 bytes)

 Code = cscCryptoGetData(DataSock, (char *)Temp, 128,

 (char *)PadChars, PadLen);

EXAMPLE (VB)

 Dim Temp As String

 Temp = Spaces(128)

 ' read data (up to 128 bytes)

 Code = cscCryptoGetData(DataSock, Temp, 128, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes copied to Buffer.

http://www.marshallsoft.com/csc_usr.pdf

 18

2.13 cscCryptoGetFile :: Receives an Encrypted File.

SYNTAX

cscCryptoGetFile(vSock, FileName, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 Filename : (P) Filename (not path) for incoming file or NULL.

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoGetFile function is used to receive an encrypted file from an established connection

transmitted from the cscCryptoPutFile function.

The received bytes in ’Buffer’ have been XOR’ed with the bytes in ’PadChars’ . If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Specify the filename under which the file is to be saved, or specify an asterisk (“*”) to save under the

filename sent with the file. Then call cscCryptoGetFile repeatedly in a loop until 0 is returned.

The incoming data stream will contain the filename and the length of the file, followed by the (binary) file

itself. The filename can be recovered by use of the cscGetString function and the file length can be

recovered by use of the cscGetInteger function.

Also see cscSetString(-1, CSC_SET_FILE_PATH,...) to specify the file directory into which the file is

to be saved.

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 // prepare to receive file, saving to disk

 Code = cscCryptoGetFile(DataSock, (char *)"*",(char *)PadChars, PadLen);

 // receive file in 4K blocks

 while(Code!=0) Code = cscCryptoGetFile(DataSock, NULL,

 (char *)PadChars, PadLen);

EXAMPLE (VB)

 ' prepare to receive file, saving to disk

 X = "*" + Chr(0)

 Code = cscCryptoGetFile(DataSock, X, PadChars, PadLen)

 // receive file in 4K blocks

 EmptyString = Chr(0)

 While Code <> 0

 Code = cscCryptoGetFile(DataSock, EmptyString, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

http://www.marshallsoft.com/csc_usr.pdf

 19

2.14 cscCryptoGetFileExt :: Receives an Encrypted File (Extended).

SYNTAX

cscCryptoGetFileExt(vSock, FileName, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 FileFlag : (I) T: setup, F: send data packets.

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoGetFileExt function is used to receive an encrypted file from an established connection

transmitted from the cscCryptoPutFileExt function. If the file exists on the receiver and has the same size

as on the sender, the file is not sent again.

The received bytes in ’Buffer’ have been XOR’ed with the bytes in ’PadChars’. If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Specify the filename under which the file is to be saved, or specify an asterisk (“*”) to save under the

filename sent with the file. Then call cscCryptoGetFileExt repeatedly in a loop until 0 is returned.

The incoming data stream will contain the filename and the length of the file, followed by the (binary) file

itself. The filename can be recovered by use of the cscGetString function and the file length can be

recovered by use of the cscGetInteger function.

The cscCryptoGetFileExt function transfers only that part of the specified file that has not already been

transferred. If only part of a file is transferred (because of a network or computer malfunction), the

function will resume the file transfer without having to send the entire file over again.

Also see cscSetString(-1, CSC_SET_FILE_PATH,...) to specify the file directory into which the file is

to be saved.

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 // prepare to receive file, saving to disk

 Code = cscCryptoGetFileExt(DataSock, 1,(char *)PadChars, PadLen);

 // receive file in 4K blocks

 while(Code!=0)

 Code = cscCryptoGetFileExt(DataSock, 0,(char *)PadChars, PadLen);

EXAMPLE (VB)

 ' prepare to receive file, saving to disk

 Code = cscCryptoGetFileExt(DataSock, 1, PadChars, PadLen)

 ' receive file in 4K blocks

 While Code <> 0 Code = cscCryptoGetFileExt(DataSock, 0, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

http://www.marshallsoft.com/csc_usr.pdf

 20

2.15 cscCryptoGetPacket :: Receives an Encrypted Packet.

SYNTAX

cscCryptoGetPacket(vSock, Buffer, BufLen, PadChars, PadLen)

 vSock : (I) Virtual (data) socket.

 Buffer : (P) Buffer into which to copy bytes.

 BufLen : (I) Length of above buffer.

 PadChars: (P) Buffer of "pad" bytes.

 PadLen : (I) Length of above "pad" buffer.

REMARKS

The cscCryptoGetPacket function is used to receive the next encrypted packet from an established

connection. The next packet is copied to ‘Buffer’ up to a maximum of ‘BufLen’. cscCryptoGetPacket

waits for a maximum of 10 seconds (default) for the next packet..

Packets can vary from 1 to 10,000 bytes in length. cscCryptoGetPacket will not return until the entire

packet has been received.

The received bytes in ’Buffer’ have been XOR’ed with the bytes in ’PadChars’ . If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Also read Section 11, “Encryption”, Section 2.8, “Stream Data I/O” and Section 2.9, “Packet Data I/O” in

the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 char Temp[128];

 // read data (up to 128 bytes)

 Code = cscCryptoGetPacket(DataSock, (char *)Temp, 128,

 (char *)PadChars, PadLen);

EXAMPLE (VB)

 Dim Temp As String * 128

 ' read data (up to 128 bytes)

 Code = cscCryptoGetPacket(DataSock, Temp, 128, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes copied to Buffer (packet size).

http://www.marshallsoft.com/csc_usr.pdf

 21

2.16 cscCryptoPutData :: Transmits Encrypted Data.

SYNTAX

cscCryptoPutData(vSock, Buffer, BufLen, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 Buffer : (P) Data to write.

 BufLen : (I) Length of above buffer (# bytes to write).

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoPutData function is used to write (transmit) an encrypted buffer to an established

connection.

The bytes in ’Buffer’ are XOR’ed with the bytes in ’PadChars’ before sending. If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 char *Temp = "Hello";

 // write 5 bytes of data

 Code = cscCryptoPutData(DataSock, (char *)Temp, 5,

 (char *)PadChars, PadLen);

EXAMPLE (VB)

 Dim Temp As String

 Temp = "Hello"

 ' write 5 bytes of data

 Code = cscCryptoPutData(DataSock, Temp, 5, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes written.

http://www.marshallsoft.com/csc_usr.pdf

 22

2.17 cscCryptoPutFile :: Transmits an Encrypted File.

SYNTAX

cscPutFile (vSock, FileName, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 FileName : (P) Filename (not path) to transmit.

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoPutFile function is used to transmit an encrypted file from an established connection

transmitted to the cscCryptoGetFile function.

The bytes in ’Buffer’ are XOR’ed with the bytes in ’PadChars’ before sending. If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Call cscCryptoPutFile with a filename to specify the file to be sent, then call cscCryptoPutFile

repeatedly in a loop until 0 is returned.

The outgoing data steam will contain the filename and the length of the file, followed by the (binary) file

itself.

Also see cscSetString(-1, CSC_SET_FILE_PATH, ...) to specify the file directory from which

the file will be read.

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 // prepare to transmit encrypted file "MyFile.zip" to the remote

 Code = cscCryptoPutFile(DataSock,(char *)"MyFile.zip",(char *)PadChars,

 PadLen);
 // transmit file

 while(Code!=0) Code = cscCryptoPutFile(DataSock, NULL,

 (char *)PadChars, PadLen));

EXAMPLE (VB)

 Dim Filename As String

 Filename = "MyFile.zip"

 ' prepare to transmit file "MyFile.zip" to the remote

 Code = cscCryptoPutFile(DataSock, Filename, PadChars, PadLen)

 ' transmit file

 While Code <> 0

 Code = cscCryptoPutFile(DataSock, Chr(0), PadChars, PadLen))

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

http://www.marshallsoft.com/csc_usr.pdf

 23

2.18 cscCryptoPutFileExt :: Transmits an Encrypted File (Extended).

SYNTAX

cscPutFileExt (vSock, FileName, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 FileName : (P) Filename (not path) to transmit.

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoPutFileExt function is used to transmit an encrypted file from an established connection

transmitted to the cscCryptoGetFileExt function. If the file exists on the receiver and has the same size as

on the sender, the file is not sent again.

The bytes in ’Buffer’ are XOR’ed with the bytes in ’PadChars’ before sending. If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Call cscCryptoPutFileExt with a filename to specify the file to be sent, then call cscCryptoPutFile

repeatedly in a loop until 0 is returned.

The cscCryptoPutFileExt function transfers only that part of the specified file that has not already been

transferred. If only part of a file is transferred (because of a network or computer malfunction), the

function will resume the file transfer without having to send the entire file over again.

The outgoing data steam will contain the filename and the length of the file, followed by the (binary) file

itself.

Also see cscSetString(-1, CSC_SET_FILE_PATH, ...) to specify the file directory from which

the file will be read.

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 // prepare to transmit encrypted file "MyFile.zip" to the remote

 Code = cscCryptoPutFileExt(DataSock, (char *)"MyFile.zip",

 (char *)PadChars, PadLen);
 // transmit file

 while(Code!=0) Code = cscCryptoPutFileExt(DataSock, NULL,

 (char *)PadChars, PadLen));

EXAMPLE (VB)

 Dim Filename As String

 Filename = "MyFile.zip"

 ' prepare to transmit file "MyFile.zip" to the remote

 Code = cscCryptoPutFileExt(DataSock, Filename, (char *)PadChars, PadLen);

 ' transmit file

 While Code <> 0

 Code = cscCryptoPutFileExt(DataSock, Chr(0), PadChars, PadLen))

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

http://www.marshallsoft.com/csc_usr.pdf

 24

2.19 cscCryptoPutPacket :: Transmits an Encrypted Packet.

SYNTAX

cscCryptoPutPacket(vSock, Buffer, BufLen, PadChars, PadLen)

 vSock : (I) Virtual (data) socket number.

 Buffer : (P) Data to write.

 BufLen : (I) Length of above buffer (# bytes to write).

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above ‘pad’ buffer.

REMARKS

The cscCryptoPutPacket function is used to write (transmit) an encrypted data packet to an established

connection.

Packets can vary from 1 to 10,000 bytes in length. cscCryptoPutPacket will not return until the entire

packet has been queued for transmission.

The bytes in ’Buffer’ are XOR’ed with the bytes in ’PadChars’ before sending. If PadLen < BufLen, the

XOR’ing continues in Buffer at the beginning of the pad buffer (wrap around).

Also read Section 11, “Encryption”, Section 2.8, “Stream Data I/O” and Section 2.9, “Packet Data I/O” in

the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 char *Temp = "Hello";

 // write 5 bytes of data

 Code = cscCryptoPutPacket(DataSock, (char *)Temp, 5,

 (char *)PadChars, PadLen);

EXAMPLE (VB)

 Dim Temp As String

 Temp = "Hello"

 ' write 5 bytes of data

 Code = cscCryptoPutPacket(DataSock, Temp, 5, PadChars, PadLen)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes written.

http://www.marshallsoft.com/csc_usr.pdf

 25

2.20 cscDataCRC :: Compute CRC of Data Buffer.

SYNTAX

cscDataCRC(InitCRC, Buffer, BufLen)

 InitCRC : (I) Initial value of CRC.

 Buffer : (P) Data to write.

 BufLen : (I) Length of above buffer (# bytes to write).

REMARKS

The cscDataCRC function is used to compute the 32-bit cyclic redundancy check (CRC) word of the

passed buffer.

EXAMPLE (C/C++)

UNSIGNED INT CRC; // CRC

char *Buffer = "ABC"; // data buffer

CRC = cscDataCRC(0L, Buffer, 3);

EXAMPLE (VB)

Dim CRC As Integer

Dim Buffer As String

Buffer = "ABC"

CRC = cscDataCRC(0L, Buffer, 3)

RETURNS

= 0 : Error.

Else : CRC

 26

2.21 cscDataMessage :: Sends Windows Message (on Data Ready).

SYNTAX

cscDataMessage(Handle, vSock, Message)

 Handle : (I) Windows Handle

 vSock : (I) Virtual data socket.

 Message : (I) Message (usually WM_USER)

REMARKS

The cscDataMessage function sends a Windows message to the window with handle 'Handle' when data is

ready to be read from the other side (client or server).

Refer to the windows client example programs.

EXAMPLE (C/C++)

 // Send WM_USER message when data is ready to be read

 cscDataMessage(hMainWnd, DataSock, WM_USER);

EXAMPLE (VB)

 Const WM_LBUTTONDOWN = &H201

 ' send WM_LBUTTONDOWN message when data is ready to be read

 Code = cscDataMessage(Client.bReady.hWnd, DataSock, WM_LBUTTONDOWN)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 27

2.22 cscErrorText :: Gets Text of Error Message.

SYNTAX

cscErrorText(ErrCode, Buffer, BufLen)

 ErrCode : (I) Error code returned from a CSC function.

 Buffer : (P) Buffer into which to copy text.

 BufLen : (I) Length of above buffer.

REMARKS

The cscErrorText function is used to get the text of an error message associated with the error code

returned from a CSC function.

Refer to the example programs.

EXAMPLE (C/C++)

 char Buffer[128];

 // get error text associated with error 'ErrCode'

 Code = cscError(ErrCode, (char *)Buffer, 128);

EXAMPLE (VB)

 Dim Buffer As String * 128

 ' get error text associated with error 'ErrCode'

 Code = cscError(ErrCode, Buffer, 128)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of characters copied to Buffer.

 28

2.23 cscFileCRC :: Compute CRC of File.

SYNTAX

cscFileCRC(Pathname)

 Pathname: (I) Pathname of file.

REMARKS

The cscFileCRC function is used to compute the 32-bit cyclic redundancy check (CRC) word of a file.

EXAMPLE (C/C++)

UNSIGNED INT CRC;

CRC = cscFileCRC((char *)"\\csc4c\\apps\\csc.h");

EXAMPLE (VB)

Dim CRC As Integer

Dim Pathname As String

Pathname = "\csc4c\apps\csc.h"
CRC = cscFileCRC(Pathname);

RETURNS

= 0 : Error.

Else : CRC

file://csc4c/apps/csc.h
file://csc4c/apps/csc.h

 29

2.24 cscFileLength :: Returns File length.

SYNTAX

cscFileLength(PathName)

 PathName : (P) Full path to file.

REMARKS

The cscFileLength function returns the (lower 32 bits) length of the specified file.

This function is provided for use with those languages that do not have a file length function.

EXAMPLE (C/C++)

 unsigned int Len;

 char *File = “\\aes4c\\apps\\examples.txt”

 FileLen = cscFileLength((char *)File);

EXAMPLE (VB)

 Dim As String File

 File = “\csc4vb\apps\examples.txt”

 FileLen = cscFileLength(File)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of characters copied to the PadChars buffer.

 30

2.25 cscFillRandom :: Fill Buffer With Random Bytes.

SYNTAX

cscFillRandom(PadChars, PadLen, Seed)

 PadChars : (P) Buffer of “pad” bytes.

 PadLen : (I) Length of above “pad” buffer.

 Seed : (I) Random number seed.

REMARKS

The cscFillRandom function fills the PadChars buffer with 8-bit bytes generated from a pseudo random

number generator using the passed Seed value as the seed. Passing a seed of zero will direct

cscFileRandom to use a randomly generated seed.

This function provides an easy way to populate the PadChars buffer used by the crypto functions. The

passed (32-bit) seed is the password.

Also read Section 2.11, “Encryption”, in the CSC User’s Manual (CSC_USR.PDF).

EXAMPLE (C/C++)

 char PadChars[1024];

 Code = cscFillRandom((char *)PadChar, 1024, 1234567);

EXAMPLE (VB)

 Dim PadChars As String * 1024

 Code = cscFillRandom(PadChar, 1024, 1234567)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of characters copied to the PadChars buffer.

http://www.marshallsoft.com/csc_usr.pdf

 31

2.26 cscGetData :: Receives Data.

SYNTAX

cscGetData(vSock, Buffer, BufLen)

 vSock : (I) Virtual (data) socket.

 Buffer : (P) Buffer into which to copy bytes.

 BufLen : (I) Length of above buffer.

REMARKS

The cscGetData function is used to receive data from an established connection. All available data is

copied to ‘Buffer’ up to a maximum of ‘BufLen’. cscGetData never waits for data.

Because TCP is stream oriented, data sent in one network write may not be received in one network read.

EXAMPLE (C/C++)

 char Temp[128];

 // read data (up to 128 bytes)

 Code = cscGetData(DataSock, (char *)Temp, 128);

EXAMPLE (VB)

 Dim Temp As String * 128

 ' read data (up to 128 bytes)

 Code = cscGetData(DataSock, Temp, 128)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes copied to Buffer.

 32

2.27 cscGetFile :: Receives a File.

SYNTAX

cscGetFile(vSock, FileName)

 vSock : (I) Virtual (data) socket number.

 Filename : (P) Filename (not path) used to save incoming file or NULL.

REMARKS

The cscGetFile function is used to receive a file from an established connection transmitted from the

cscPutFile function.

Specify the filename under which the file is to be saved, or specify an asterisk (“*”) to save under the

filename sent with the file. Then call cscGetFile repeatedly in a loop until 0 is returned.

The incoming data stream will contain the filename and the length of the file, followed by the (binary) file

itself. The filename can be recovered by use of the cscGetString function and the file length can be

recovered by use of the cscGetInteger function.

Also see cscSetString(-1, CSC_SET_FILE_PATH,...) to specify the file directory into which the

file is to be saved.

EXAMPLE (C/C++)

 // prepare to receive file, saving to disk

 Code = cscGetFile(DataSock, (char *)"*");

 // receive file in 4K blocks

 while(Code!=0) Code = cscGetFile(DataSock, NULL);

EXAMPLE (VB)

 ' prepare to receive file, saving to disk

 X = "*" + Chr(0)

 Code = cscGetFile(DataSock, X)

 // receive file in 4K blocks

 EmptyString = Chr(0)

 While Code <> 0

 Code = cscGetFile(DataSock, EmptyString)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 33

2.28 cscGetFileExt :: Receives a File (Extended).

SYNTAX

cscGetFileExt(vSock, FileName)

 vSock : (I) Virtual (data) socket number.

 FileName : (I) T: setup, F: send data packets.

REMARKS

The cscGetFileExt function is used to receive a file from an established connection transmitted from the

cscPutFileExt function. If the file exists on the receiver and has the same size as on the sender, the file is

not sent again.

Specify the filename under which the file is to be saved, or specify an asterisk (“*”) to save under the

filename sent with the file. Then call cscGetFileExt repeatedly in a loop until 0 is returned.

The incoming data stream will contain the filename and the length of the file, followed by the (binary) file

itself. The filename can be recovered by use of the cscGetString function and the file length can be

recovered by use of the cscGetInteger function.

The cscGetFileExt function transfers only that part of the specified file that has not already been

transferred. If only part of a file is transferred (because of a network or computer malfunction), the

function will resume the file transfer without having to send the entire file over again.

Also see cscSetString(-1, CSC_SET_FILE_PATH,...) to specify the file directory into which the

file is to be saved.

EXAMPLE (C/C++)

 // prepare to receive file, saving to disk

 Code = cscGetFileExt(DataSock, 1);

 // receive file in 4K blocks

 while(Code!=0) Code = cscGetFileExt(DataSock, 0);

EXAMPLE (VB)

 ' prepare to receive file, saving to disk

 Code = cscGetFileExt(DataSock, 1)

 ' receive file in 4K blocks

 While Code <> 0

 Code = cscGetFileExt(DataSock, 0)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 34

2.29 cscGetInteger :: Returns CSC Numeric Parameter with Client/Server

processing information.

SYNTAX

cscGetInteger(vSock, ParmName)

 vSock : (I) Virtual socket number or -1.

 ParmName : (I) Parameter name.

REMARKS

The cscGetInteger function is used to get integer parameters from the DLL.

CSC_GET_VERSION : Get version number (vSock = -1)

CSC_GET_BUILD : Get build number (vSock = -1)

CSC_GET_BUFFER_SIZE : Get file buffer size used by cscGetFile & cscPutFile.

CSC_GET_DAYS_LEFT : Get the number days left in the evaluation period.

CSC_GET_SOCK_ERROR : Get socket error number.

CSC_GET_SOCKET : Get actual TCP/IP socket number being used.

CSC_GET_FILE_LENGTH : Get file length after receiving file (cscGetFile)

CSC_GET_MAX_PACKET_SIZE : Get maximum packet size.

EXAMPLE (C/C++)

 int Version;

 // get CSC version number

 Version = cscGetInteger(-1, CSC_GET_VERSION);

EXAMPLE (VB)

 Dim Version As Integer

 ' get CSC version number

 Version = cscGetInteger(-1, CSC_GET_VERSION)

RETURNS

< 0 : Error. See error list.

>= 0 : Requested parameter.

 35

2.30 cscGetPacket :: Receives a Packet.

SYNTAX

cscGetPacket(vSock, Buffer, BufLen)

 vSock : (I) Virtual (data) socket.

 Buffer : (P) Buffer into which to copy bytes.

 BufLen : (I) Length of above buffer.

REMARKS

The cscGetPacket function is used to receive the next packet from an established connection. The next

packet is copied to ‘Buffer’ up to a maximum of ‘BufLen’. cscGetPacket waits for a maximum of 10

seconds (default) for the next packet..

Packets can vary from 1 to 10,000 bytes in length. cscGetPacket will not return until the entire packet has

been received.

Also read Section 2.8, “Stream Data I/O” and Section 2.9, “Packet Data I/O” in the CSC User’s Manual

(CSC_USR.PDF).

EXAMPLE (C/C++)

 char Temp[128];

 // read data (up to 128 bytes)

 Code = cscGetPacket(DataSock, (char *)Temp, 128);

EXAMPLE (VB)

 Dim Temp As String * 128

 ' read data (up to 128 bytes)

 Temp = Space(128)

 Code = cscGetPacket(DataSock, Temp)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes copied to Buffer (packet size).

http://www.marshallsoft.com/csc_usr.pdf

 36

2.31 cscGetString :: Returns CSC String Parameter with Client/Sever

Processing Information.

SYNTAX

cscGetString(vSock, ParmName, Buffer, BufLen)

 vSock : (I) Virtual socket number or -1.

 ParmName : (I) Parameter name.

 Buffer : (P) Buffer into which to copy text.

 BufLen : (I) Length of above buffer.

REMARKS

The cscGetString function is used to get string (text) parameters from the DLL.

CSC_GET_REGISTRATION : Get registration string.

CSC_GET_FILE_NAME : Get filename after receiving file (cscGetFile).

CSC_GET_REMOTE_SERVER_IP : Get IP address in dotted notation of remote server.

CSC_GET_REMOTE_CLIENT_IP : Get IP address in dotted notation of remote client.

CSC_GET_LOCAL_IP : Get local IP address in dotted notation.

CSC_GET_COMPUTER_NAME : Get name of local computer.

EXAMPLE (C/C++)

 // get registration string

 char RegString[128];

 Code = cscGetString(vSock, CSC_GET_REGISTRATION, (char *)RegString, 128)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of characters copied to Buffer.

 37

2.32 cscGetUDP :: Reads UDP Datagram.

SYNTAX

cscGetUDP(vSock, Buffer, BufLen, Host)

vSock : (I) Virtual UDP socket.

Buffer : (I) Buffer into which datagram is to be copied.

BufLen : (I) Size of buffer.

Host : (P) Host name or IP address (dotted format).

REMARKS

The cscGetUDP function reads an incoming UDP datagram. cscCreateUDP must be called first to get a

UDP socket.

Refer to the uEcho_S (UDP server) and uEcho_C (UDP client) example programs.

EXAMPLE (C/C++)

 // Read UDP socket into 'Buffer'

 BytesRead = cscGetUDP(vSock, (char *)Buffer, BufSize, (char *)Host);

EXAMPLE (VB)

 ' Read UDP socket into 'Buffer'

 BytesRead = cscGetUDP(vSock, Buffer, Host)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 38

2.33 cscIsConnected:: Returns the Current Connection Status.

SYNTAX

cscIsConnected(vSock)

 vSock : (I) Virtual socket number.

REMARKS

The cscIsConnected function is used determine the current connection status.

Awaiting incoming socket data (cscAwaitData), reading socket data (cscGetData), and writing socket

data (cscPutData) will all return an error code if the socket connection has been dropped.

EXAMPLE (C/C++)

 //test connection

 if(!cscIsConnected(vSock))

 {printf("*** ERROR: Connection has been dropped!\n");

 break;

 }

EXAMPLE (VB)

 Dim vSock As Integer

 If cscIsConnected(vSock) <> 0 Then

 Result.Text = "*** ERROR: Connection has been dropped!"

 End If

RETURNS

True : Connective is OK.

False : Connection has been dropped.

 39

2.34 cscLaunch :: Starts an External Executable

SYNTAX

cscLaunch(PgmPath, CmdLine)

 PgmPath : (P) The path to the program command (or NULL)

 CmdLine : (P) Program ommand line

REMARKS

The cscMakeDotted function is used to create a dotted text version of the specified IP address.

EXAMPLE (C/C++)

 char Browser[] = "C:\\Program Files\\Internet Explorer\\IEXPLORE.EXE";

 // launch the browser

 Code = cscLaunch(0, CmdLine);

EXAMPLE (VB)

 Dim Empty As String

 Dim Browser As String

 Empty = Chr(0)

 Browser = "C:\Program Files\Internet Explorer\IEXPLORE.EXE";

 // launch the browser

 Code = cscLaunch(0, CmdLine)

RETURNS

< 0 : Error. See error list.

>= 0 : IP address in dotted decimal notation (e.g.: "10.0.0.1")

 40

2.35 cscMakeDotted :: Create Dotted IP String From IP Address

SYNTAX

cscMakeDotted(Addr, Buffer, BufLen)

 Addr : (L) 32-bit IP address.

 Buffer : (P) Buffer into which to copy dotted address.

 BufLen : (I) Length of above buffer.

REMARKS

The cscMakeDotted function is used to create a dotted text version of the specified IP address.

EXAMPLE (C/C++)

 UNSIGNED INT Addr;

 Addr = cscResolve((char *)"www.marshallsoft.com", 0);

 // construct dotted decimal equivalent string

 if(Addr) cscMakeDotted(Addr, (char *)Temp, 64);

EXAMPLE (VB)

 Dim Addr As Integer

 Dim X As String

 Dim Temp As String

 X = www.marshallsoft.com

 Addr = cscResolve(X, 0)

 ' construct dotted decimal equivalent string

 If Addr <> 0 Then

 Temp = Space(20)

 cscMakeDotted(Addr, Temp, 20)

RETURNS

< 0 : Error. See error list.

>= 0 : IP address in dotted decimal notation (e.g.: "10.0.0.1")

http://www.marshallsoft.com/

 41

2.36 cscMakeDotted4 :: Create Dotted IP String From IP Components

SYNTAX

cscMakeDotted(Byte1, Byte2, Byte3, Byte4, Buffer, BufLen)

 Byte1 : (L) First IP address Byte [0..255]

 Byte2 : (L) First IP address Byte [0..255]

 Byte3 : (L) First IP address Byte [0..255]

 Byte4 : (L) First IP address Byte [0..255]

 Buffer : (P) Buffer into which to copy dotted address.

 BufLen : (I) Length of above buffer.

REMARKS

The cscMakeDotted4 function is used to create a dotted text version of the specified IP address as

specified by 4 Bytes.

EXAMPLE (C/C++)

 int Byte1 = 10;

 int Byte2 = 0;

 int Byte3 = 0,

 int Byte4 = 1;

 // construct dotted decimal equivalent string "10.0.0.1"

 cscMakeDotted2(Byte1, Byte2, Byte3, Byte4, (char *)Temp, 64);

EXAMPLE (VB)

 Dim Byte1 As Integer

 Dim Byte2 As Integer

 Dim Byte3 As Integer

 Dim Byte4 As Integer

 Dim X As String

 Dim Temp As String

 Byte1 = 10

 Byte2 = 0

 Byte3 = 0

 Byte4 = 1

 ' construct dotted decimal equivalent string "10.0.0.1"

 X = Space(20)

 Code = cscMakeDotted4(Byte1, Byte2, Byte3, Byte4, Temp, 20)

RETURNS

< 0 : Error. See error list.

>= 0 : IP address in dotted decimal notation (e.g., "10.0.0.1")

 42

2.37 cscMulticast :: Sets multicast address

SYNTAX

cscMulticast(vSock, MultiIP)

vSock : (I) Virtual (data) socket number.

MultiIP : (I) Multicast IP address

REMARKS

The cscMulticast function sets the multicast IP address for receiving UDP packets.

To send a multicast datagram, specify an IP multicast address using 239.255.x.y as the destination address.

The receiving program should call cscMulticast() to set up the multicast address. cscMulticast() is NOT

called to send packets.

EXAMPLE (C/C++)

 MulticastIP = cscResolve(MULTICAST_IP, 0);

 Code = cscMulticast(vSock, MulticastIP);

EXAMPLE (VB)

 MulticastIP = cscResolve(MULTICAST_IP, 0)

 Code = cscMulticast(vSock, MulticastIP)

RETURNS

 < 0 : Error. See error list.

>= 0 : No error.

 43

2.38 cscNetToHost16 :: Converts a 16-bit integer to host byte order

SYNTAX

cscNetToHost16(Integer)

Integer : (I) 16-bit integer in network byte order.

REMARKS

The cscNetToHost16 program converts a 16-bit integer from network byte order to host byte order. For

example, the Network Time Server protocol returns an integer in network byte order that must be

converted to host byte order.

EXAMPLE (C/C++)

 // convert to host byte order

 HostInteger = cscNetToHost(NetInteger);

EXAMPLE (VB)

 ' convert to host byte order

 HostInteger = cscNetToHost(NetInteger);

RETURNS

16-bit integer in host byte order.

 44

2.39 cscNetToHost32 :: Converts a 32-bit integer to host byte order

SYNTAX

cscNetToHost32(Integer)

Integer : (I) 32-bit integer in network byte order.

REMARKS

The cscNetToHost32 program converts a 32-bit integer from network byte order to host byte order. For

example, the Network Time Server protocol returns an integer in network byte order that must be

converted to host byte order.

EXAMPLE (C/C++)

 // convert to host byte order

 HostInteger = cscNetToHost(NetInteger);

EXAMPLE (VB)

 ' convert to host byte order

 HostInteger = cscNetToHost(NetInteger);

RETURNS

32-bit integer in host byte order.

 45

2.40 cscPutData :: Transmits Data.

SYNTAX

cscPutData(vSock, Buffer, BufLen)

 vSock : (I) Virtual (data) socket number.

 Buffer : (P) Data to write.

 BufLen : (I) Length of above buffer (# bytes to write).

REMARKS

The cscPutData function is used to write (transmit) a buffer to an established connection.

Because TCP is stream oriented, data sent in one network write may not be received in one network read.

EXAMPLE (C/C++)

 char *Temp = "Hello";

 // write 5 bytes of data

 Code = cscPutData(DataSock, (char *)Temp, 5);

EXAMPLE (VB)

 Dim Temp As String

 Temp = "Hello"

 ' write 5 bytes of data

 Code = cscPutData(DataSock, Temp, 5)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes written.

 46

2.41 cscPutFile :: Transmits a File.

SYNTAX

cscPutFile(vSock, FileName)

 vSock : (I) Virtual (data) socket number.

 FileName : (P) Filename (not path) to transmit.

REMARKS

The cscPutFile function is used to transmit a file from an established connection transmitted to the

cscGetFile function.

Call cscPutFile with a filename to specify the file to be sent, then call cscPutFile repeatedly in a loop until

0 is returned.

The outgoing data steam will contain the filename and the length of the file, followed by the (binary) file

itself.

Also see cscSetString(-1, CSC_SET_FILE_PATH, ...) to specify the file directory from which

the file will be read.

EXAMPLE (C/C++)

 // prepare to transmit file "MyFile.zip" to the remote

 Code = cscPutFile(DataSock, (char *)"MyFile.zip");

 // transmit file in 4K blocks

 while(Code!=0) Code = cscPutFile(DataSock, NULL);

EXAMPLE (VB)

 Dim Filename As String

 Filename = "MyFile.zip"

 ' prepare to transmit file "MyFile.zip" to the remote

 Code = cscPutFile(DataSock, Filename)

 ' transmit file in 4K blocks While Code <> 0

 Code = cscPutFile(DataSock, Chr(0))

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 47

2.42 cscPutFileExt :: Transmits a File (Extended).

SYNTAX

cscPutFileExt(vSock, FileName)

 vSock : (I) Virtual (data) socket number.

 FileName : (P) Filename (not path) to transmit.

REMARKS

The cscPutFileExt function is used to transmit a file from an established connection transmitted to the

cscGetFileExt function. If the file exists on the receiver and has the same size as on the sender, the file is

not sent again.

Call cscPutFileExt with a filename to specify the file to be sent, then call cscPutFileExt repeatedly in a

loop until 0 is returned.

The outgoing data steam will contain the filename and the length of the file, followed by the (binary) file

itself.

The cscPutFileExt function transfers only that part of the specified file that has not already been

transferred. If only part of a file is transferred (because of a network or computer malfunction), the

function will resume the file transfer without having to send the entire file over again.

Also see cscSetString(-1, CSC_SET_FILE_PATH, ...) to specify the file directory from which

the file will be read.

EXAMPLE (C/C++)

 // prepare to transmit file "MyFile.zip" to the remote

 Code = cscPutFileExt(DataSock, (char *)"MyFile.zip");

 // transmit file in 4K blocks

 while(Code!=0) Code = cscPutFileExt(DataSock, NULL);

EXAMPLE (VB)

 Dim Filename As String

 Filename = "MyFile.zip"

 ' prepare to transmit file "MyFile.zip" to the remote

 Code = cscPutFileExt(DataSock, Filename)

 ' transmit file in 4K blocks

 While Code <> 0

 Code = cscPutFileExt(DataSock, Chr(0))

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 48

2.43 cscPutPacket :: Transmits a Packet.

SYNTAX

cscPutPacket(vSock, Buffer, BufLen)

 vSock : (I) Virtual (data) socket number.

 Buffer : (P) Data to write.

 BufLen : (I) Length of above buffer (# bytes to write).

REMARKS

The cscPutPacket function is used to write (transmit) an encrypted data packet to an established

connection.

Packets can vary from 1 to 10,000 bytes in length. cscPutPacket will not return until the entire packet has

been queued for transmission.

Also read Section 2.8, “Stream Data I/O” and Section 2.9, “Packet Data I/O” in the CSC User’s Manual

(CSC_USR.PDF).

EXAMPLE (C/C++)

 char *Temp = "Hello";

 // write 5 bytes of data

 Code = cscPutPacket(DataSock, (char *)Temp, 5);

EXAMPLE (VB)

 Dim Temp As String

 Temp = "Hello"

 ' write 5 bytes of data

 Code = cscPutPacket(DataSock, Temp, 5)

RETURNS

< 0 : Error. See error list.

http://www.marshallsoft.com/csc_usr.pdf

 49

2.44 cscPutUDP :: Writes UDP Socket.

SYNTAX

cscPutUDP(vSock, Buffer, BufLen, RemoteIP, RemotePort)

vSock : (I) Virtual UDP socket.

Buffer : (I) Buffer into which datagram is to be copied.

BufLen : (I) Size of buffer.

RemoteIP : (I) Remote IP address (32-bit address)

RemotePort : (P) Remote port.

REMARKS

The cscPutUDP function writes a UDP datagram. cscCreateUDP must be called first to get a UDP socket.

Refer to the uEcho_S (UDP server) and uEcho_C (UDP client) example programs.

EXAMPLE (C/C++)

 // Write UDP socket from 'Buffer'

 BytesWritten = cscPutUDP(vSock,(char *)Buffer, BufSize, RemoteIP);

EXAMPLE (VB)

 ' Read UDP socket into 'Buffer'

 BytesRead = cscPutUDP(vSock,Buffer, Host)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 50

2.45 cscReadSize :: Returns the Number of Bytes Ready to be Read.

SYNTAX

cscReadSize(vSock)

 vSock : (I) Virtual (data) socket number.

REMARKS

The cscReadSize function is used to get the number of bytes ready to be read from the socket.

EXAMPLE (C/C++)

 int Bytes;

 // get # bytes ready to be read

 Bytes = cscReadSize(vSock);

EXAMPLE (VB)

 Dim Bytes As Integer

 ' get # bytes ready to be read

 Bytes = cscReadSize(vSock)

RETURNS

< 0 : Error. See error list.

>= 0 : Number of bytes ready to be read.

 51

2.46 cscRelease :: Releases DLL.

SYNTAX

cscRelease()

REMARKS

The cscRelease function is used to release CSC32.DLL or CSC64.DLL and should be the last CSC

function called.

EXAMPLE (C/C++)

 int Code;

 // release CSC32.DLL

 Code = cscRelease();

EXAMPLE (VB)

 Dim Code As Integer

 ' release CSC32.DLL

 Code = cscRelease()

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 52

2.47 cscResolve :: Resolves Host Name into IP Address.

SYNTAX

cscResolve(HostName, HostIndex)

 HostName : (P) Server name or IP address (in dotted notation).

 HostIndex : (I) Server index (if multi-homed).

REMARKS

The cscResolve function is used to resolve a host name to an IP address by calling DNS (Domain Name

Services).

EXAMPLE (C/C++)

 UNSIGNED INT Addr;

 // resolve host name into an IP address.

 Addr = cscResolve((char *)"www.marshallsoft.com", 0);

EXAMPLE (VB)

 Dim Addr As Integer

 Dim URL As String

 URL = "www.marshallsoft.com"

 ' resolve host name into an IP address.

 Addr = cscResolve(URL, 0)

RETURNS

< 0 : Error. See error list.

>= 0 : IP address.

 53

2.48 cscResponse :: Constructs Response String.

SYNTAX

cscResponse(ChallStr,Multi,Mask,Rotate,Response)

 ChallStr : (P) 8 character challenge string (in hex)

 Mult : (I) 32-bit multiplier

 Mask : (I) 32-bit mask value

 Rotate : (I) Left rotate count (0 to 31)

 Response : (P) Buffer for response string

REMARKS

The cscResponse function constructs the correct response string for the given challenge string.

The purpose of the cscChallenge and cscResponse functions is to create a challenge / response protocol in

order to defeat hackers who may try to connect to your server.

The arguments to the cscResponse function define the mapping from the 8-byte challenge string to the 8-

byte response string. Each developer should choose unique values for his application.

Also see cscChallenge, which constructs the random challenge string.

EXAMPLE (C/C++)

 char Challenge[9]; // challenge string

 char Response[9]; // response string

 UNSIGNED INT Multiplier = 321; // 32-bit multiplier

 UNSIGNED INT Mask = 0x1a2b3c4d; // 32-bit mask value

 int RotateCount = 3; // left rotate count (0 to 31)
 // compute correct response for the challenge number

 Code = cscResponse((char *)Challenge, Multiplier, Mask,

 RotateCount, (char *)Response);

EXAMPLE (VB)

 Dim Challenge As String

 Dim Response As String * 9

 Dim Multiplier As Integer

 Dim Mask As Integer

 Dim RotateCount As Integer

 Multiplier = 321

 Mask = &H1a2b3c4d

 RotateCount = 3
 // compute correct response for the challenge number

 Code = cscResponse(Challenge, Multiplier, Mask, RotateCount, Response)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 54

2.49 cscServer :: Starts the Server.

SYNTAX

cscServer(ServerName, ServerPort, MaxConnect)

 ServerName : (P) Server name or IP address, or NULL.

 ServerPort : (I) Server port to listen on.

 MaxConnect : (I) Maximum number of connections to accept.

REMARKS

The cscServer function is used to accept a connection from a client. Up to 'MaxConnect' connections can

be accepted by the server concurrently.

Specify the server name or IP address (in dotted decimal notation) and the port to listen on. Specify NULL

or an empty string for ServerName if you want to accept connections on any IP on the local machine.

For server applications, be sure to allocate one listen socket for each port that is to be listened on

concurrently.

EXAMPLE (C/C++)

 HostName = "\0";

 short HostPort = 5001;

 // start server, accepting a maximum of 1 connection

 Code = cscServer((char *)HostName, (int)HostPort, 1);

EXAMPLE (VB)

 Dim HostName As String

 Dim HostPort As Integer

 HostName = Chr(0)

 HostPort = 5001

 Code = cscServer(HostName, HostPort, 1)

RETURNS

>= 0 : Listen socket.

< 0 : Error (See error list)

 55

2.50 cscSetInteger :: Sets numeric parameter which contains client/server

processing information.

SYNTAX

cscSetInteger(vSock, ParamName, ParamValue)

 vSock : (I) Virtual socket number or -1.

 ParamName : (I) Parameter name.

 ParamValue : (I) Parameter value.

REMARKS

The cscSetInteger function is used to set an integer parameter in the DLL. Parameter names are:

CSC_SET_BLOCKING_MODE : Set blocking mode (connect only). Default = TRUE

CSC_SET_BUFFER_SIZE : Set write file size. Default = 10000.

CSC_SET_SLEEP_TIME : Set sleep time value when waiting. Default = 100.

CSC_SET_DEBUG_LEVEL : Set debug level (0=off, 1=low, 2-high). Default = 0.

CSC_SET_LINGER : Set linger time when socket is closed. Default = 200

CSC_SET_TIMEOUT_VALUE : Set packet timeout. Default = 10000.

CSC_SET_MAX_PACKET_SIZE : Set maximum packet size. Default = 10000.

CSC_SET_FILE_OVERWRITE : Sets file overwrite mode. Default = 0.

CSC_SET_CLOSE_TIMEOUT : Sets maximum time before a socket is forced closed.

CSC_SET_CONNECT_WAIT : Sets connection wait timeout. Default = 10.

CSC_SET_SOCK_REUSE : Allows (T/F) listening socket to be reused.

BLOCKING_MODE: The blocking mode (1 = block, 0 = don't block) applies only while connecting.

BUFFER_SIZE: The default file buffer size is 10000, the maximum size is 30000.

SLEEP_TIME: The sleep value (mSec) is used in certain functions to introduce a time delay.

DEBUG_LEVEL: Values are off (0), low (1), and high (2). The default debug level is 0.

LINGER: The linger time (mSec) is the delay after closing a socket to allow any ongoing communications

to complete on the socket.

TIMEOUT_VALUE: The timeout-value is used by cscGetFile and specified how long to wait for

individual fields before giving up.

MAX_PACKET_SIZE: The default packet buffer size is 10000, the maximum size is 30000.

FILE_OVERWRITE: When receiving file, will overwrite existing file if TRUE (not 0).

CSC_SET_CLOSE_TIMEOUT : Sets the maximum time (in milliseconds) before a socket is forced

closed (when calling cscClose). This function should not be used as a routine matter.

CSC_SET_CONNECT_WAIT: Sets the maximum time (in milliseconds) to wait for a connection to be

accepted.

CSC_SET_SOCK_REUSE: [T/F] Enables an application to close the listening socket and immediately

reopen without error.

 56

EXAMPLE (C/C++)

 int Code;

 // set 100 ms sleep time

 Code = cscSetInteger(vSock, CSC_SET_SLEEP_TIME, 100);

EXAMPLE (VB)

 Dim Code As Integer

 ' set 100 ms sleep time

 Code = cscSetInteger(vSock, CSC_SET_SLEEP_TIME, 100)

 57

2.51 cscSetString :: Sets parameter string for file processing.

SYNTAX

cscSetString(vSock, ParmName, ParmPtr)

 vSock : (I) Virtual socket number or -1.

 ParmName : (I) Parameter value.

 ParmPtr : (P) Parameter string to set.

REMARKS

The cscSetString function is used to pass string (text) parameters in the DLL.

Parameter names are as follows (pass vSock = -1).

CSC_SET_LOG_FILE : name of the log file.

CSC_WRITE_TO_LOG : write string to log file.

CSC_SET_FILE_PATH : sets path location for cscPutFile and cscGetFile.

EXAMPLE (C/C++)

 int Code;

 // set LOG filename

 Code = cscSetString (-1, CSC_SET_LOG_FILE, (char *)"MY-PROGRAM.LOG");

EXAMPLE (VB)

 Dim Code As Integer

 Dim LogName As String

 ' set LOG filename

 LogName = "MY-PROGRAM.LOG"

 Code = cscSetString (-1, CSC_SET_LOG_FILE, LogName)

RETURNS

< 0 : Error. See error list.

>= 0 : No error.

 58

2.52 cscShortToByte :: Converts 16-bit ASCII character buffer to 8-bit

SYNTAX

cscShortToByte(Buffer)

 Buffer : (P) character buffer

REMARKS

The cscShortToByte function converts the (null terminated) character buffer 'Buffer' from 16-bit Unicode

ASCII characters to 8-bit ASCII characters.

The buffer must be null terminated (last character is a hex 00).

This function is only necessary when working with 16-bit Unicode ASCII characters in C# and Delphi

2005.

RETURNS

None.

EXAMPLE (C#)

See C# example ClientCS.csproj

 NameString = "MyFile.zip\0"

 char[] NameBuffer = NameString.ToCharArray();

 // convert (null terminated) 16-unicode buffer to 8-bit

 fixed (char* pNameBuffer = NameBuffer)

 cscShortToByte(pNameBuffer);

ALSO SEE

cscByteToShort

 59

2.53 cscSleep :: Sleeps Specified Time.

SYNTAX

cscSleep(Milliseconds)

 Milliseconds : (I) Number of milliseconds to sleep.

REMARKS

The cscSleep function sleeps for the indicated number of milliseconds. 'Milliseconds' must be positive.

This function is included in CSC because it is not available in all computer languages.

EXAMPLE (C/C++)

 // sleep 1 second

 Tics = cscSleep(1000);

EXAMPLE (VB)

 ' sleep 1 second

 Tics = cscSleep(1000)

RETURNS

1 is always returned.

 60

2.54 cscSystemTics :: Returns System Tics Count.

SYNTAX

cscSystemTics()

REMARKS

The cscSystemTics function returns the system tic count, which is the number of milliseconds since the

system was booted.

The primary purpose of this function is to time various events.

This function is included in CSC because it is not available in all computer languages.

EXAMPLE (C/C++)

 unsigned long Tics;

 // return current system tics

 Tics = cscSystemTics();

EXAMPLE (VB)

 Dim Tics As Integer

 ' return current system tics

 Tics = cscSystemTics()

RETURNS

The number of milliseconds since system bootup.

 61

2.55 cscTestDotted :: Tests Dotted IP Address

SYNTAX

cscTestDotted(DottedIP)

 DottedIP : (P) Dotted IP address

REMARKS

The cscTestDotted function tests the format of a dotted IP address.

EXAMPLE (C/C++)

 char *DottedIP = “10.0.0.6”;

 if(!cscDotted(DottedIP))

 {// failure…

EXAMPLE (VB)

 Dim DottedIP As String

 DottedIP = “10.0.0.6”

 if cscDotted(DottedIP) = 0

 ‘ failure…

RETURNS

0 if false

 62

3 CSC Error Return Code List

The complete list of CSC error codes follows.

3.1 WINSOCK Error Codes

-10004: Interrupted system call.

-10009: Bad file number.

-10013: Access denied.

-10014: Bad address.

-10022: Invalid argument.

-10024: Too many open files.

-10035: Would block socket in non-blocking mode.

-10036: Blocking call already in progress.

-10037: Operation already completed.

-10038: Not a valid socket

-10039: Destination address required.

-10040: Message too big for buffer.

-10041: Prot mismatch.

-10042: Prot option invalid.

-10043: Prot not supported.

-10044: Socket type not supported.

-10045: Socket operation not supported.

-10047: Socket address family not supported.

-10048: Socket address already in use.

-10049: Socket address not available.

-10050: Network error.

-10051: Cannot reach network.

-10052: Connection dropped.

-10053: Connection timed-out or aborted.

-10054: Connection reset by remote host.

-10055: Out of buffer space.

-10056: Socket already connected.

-10057: Socket not connected.

-10058: Socket functionality shut down.

-10060: Timed-out attempting to connect.

-10061: Connection refused by remote host.

-10064: Host is down

-10065: No route to host

-10091: Network not yet ready.

-10092: WINSOCK doesn't support requested version.

-10093: Sockets not initialized. Call WSAStartup.

-11001: Host does not exist.

-11002: Host not found. Try again.

-11003: Non-recoverable error has occurred.

-11004: No data is available.

 63

3.2 CSC Error Codes

 -1: EOF.

 -2: CSC aborted.

 -3: CSC accept error.

 -4: CSC already attached

 -5: Cannot comply.

 -6: No such socket.

 -7: Connect error.

 -8: Listen error.

 -9: No such host.

-10: CSC not attached.

-11: NULL argument.

-12: NULL pointer.

-13: Cannot allocate memory

-14: Buffer size error

-15: Packet CRC error

-16: Too many sockets.

-17: No free sockets.

-18: No such file.

-19: File format protocol error.

-20: File name only.

-21: Packet timeout.

-22: Packet error.

-23: Transfer cancelled.

-24: File too large

-25: No listen socket

-26: Argument out of range

-27: Buffer size too large.

 -28: Connect timeout.

 -29: Packet size error.

-30: Cannot resolve host.

-74: Bad key code.

4.3 VSOCK Error Codes

-1001: No socket address.

-1002: No free sockets.

-1003: No such vsock.

-1004: Bad status flag.

-1005: Invalid socket.

-1006: No such parameter.

-1007: Cannot comply.

-1008: String size error.

-1009: No such server.

-1010: Buffer length error.

-1011: Connect error.

