
 1

Client / Server Communications

Library for Delphi

Programmer's Manual

(CSC4D)

Version 7.1

February 7, 2018

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2015

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815

Voice: 1.256.881.4630

Web: www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 Features Page 4

 1.2 Documentation Set Page 6

 1.3 Example Program Page 6

 1.4 Installation Page 7

 1.5 Uninstalling Page 7

 1.6 Pricing Page 7

 1.7 Updates Page 7

2 CSC Library Overview Page 8

 2.1 Dynamic Link Libraries Page 8

 2.2 Keycode Page 8

 2.3 Win32 STDCALL and DECLSPEC Page 8

 2.4 Adding CSC4D to Your 32-bit Project Page 9

 2.5 Adding CSC4D to Your 64-bit Project Page 9

 2.6 Example Protocol Page 10

 2.7 Error Display Page 10

3 Compiler Issues Page 11

 3.1 Delphi Versions Page 11

 3.2 Compiling Programs Page 13

 3.3 Compiling CSC Source Page 13

4 Delphi Example Programs Page 14

5 Revision History Page 18

 3

1 Introduction

The Client / Server Communications Library for Delphi (CSC4D) is a toolkit that allows software

developers to quickly develop server client TCP/IP and TCP/UDP applications in "Delphi for Win32" and

"Delphi for Win64".

The Client / Server Communications Library (CSC) is a component library that uses the Windows API

to create client and server programs (Win32 and Win64) that can communicate with each other across any

TCP or UDP network such as the Internet or a private network (intranet or LAN [local area net]).

The CSC library can be used to communicate with other CSC programs, or they can be used to

communicate with other TCP programs such as DNS, POP3, SMTP, FTP, HTTP, etc. CSC can also be

used to connect to devices such as a relay device, scale device, GPS device or embedded computer device

that is controlled by sending commands to its TCP IP address. CSC can also be used to encrypt and

decrypt data and files and can also be used with the MarshallSoft AES Encryption Library (AES) for

strong encryption.

The Client / Server Communications Library for Delphi (CSC4D) component library supports and has

been tested with all 32-bit and 64-bit versions of Delphi including:

 Borland Delphi (2.0, 3.0, 4.0, 5.0. 6.0 and 7.0)

 Borland Delphi 2005 & 2006

 Borland Turbo Delphi

 Codegear Delphi 2007

 Embarcadero Delphi 2009 & 2010

 Embarcadero Delphi XE through XE10

CSC4D includes multiple Delphi example programs demonstrating client/server protocols, including

examples that connect to HTTP (web) and POP3 servers as well as encrypt files.

CSC4D runs under all versions of 32-bit and 64-bit Windows through Windows 10 The Client / Server

Communications Library SDK DLLs (CSC32.DLL or CSC64.DLL) can also be used from any language

(Visual C++, Visual Basic, VB.NET, ACCESS, EXCEL, VBA, Visual FoxPro, COBOL, Xbase++, dBase,

etc.) capable of calling the Windows API.

The Client/Server Communications Programmer’s Manual provides information needed to compile

programs using CSC in a Delphi programming environment.

When comparing the Client/Server Communications Library against our competition, note that:

 CSC is a standard Windows DLL (NOT an OCX or ActiveX control).

 CSC does NOT depend on ActiveX or Microsoft Foundation Class (MFC) or similar "support" libraries.

 CSC is fully thread-safe.

 CSC functions can be called from applications not capable of using controls.

MarshallSoft also has versions of the Client/Server Communications Library for C/C++ (CSC4C),

Visual Basic (CSC4VB), dBase (CSC4DB), Xbase++ (CSC4XB) and Visual FoxPro (CSC4FP). Each

version of CSC uses the same DLLs (CSC32.DLL or CSC64.DLL). However, the examples provided for

each version are written for the specified programming language.

All versions of the Client/Server Communications Library (CSC) can be downloaded from our web site at

http://www.marshallsoft.com/client-server-communication.htm

http://www.marshallsoft.com/aes4d.htm
http://www.marshallsoft.com/client-server-communication.htm

 4

1.1 Features

Some of the many features of the Client/Server Communications Library SDK are as follows:

 Supports both UDP and TCP protocols.

 Supports both Win32 and Win64.

 Can be used to create both clients and servers.

 Supports "one time" passwords for improved security.

 Can encrypt/decrypt data and files being transmitted.

 Use with the MarshallSoft AES Encryption Library for strong encryption.

 Supports challenge response authentication.

 Can send a Windows message when a connection is ready to accept.

 Can send a Windows message when incoming data is ready to be read.

 Can send and receive data buffers or entire files.

 Servers can handle multiple connections concurrently.

 Supports secure and private messaging.

 Create chat server and clients.

 Create client / server file transfer

 Create client programs to talk to TCP servers (POP3, IMAP, HTTP, SMTP, DNS)

 Create SMTP proxy programs extracting a copy of all recipient addresses

 Create POP3 proxy programs that filter incoming email for Spam

 Create HTTP proxy used to filter content

 Can connect to a device such as a relay device, scale device, GPS device or embedded computer

device that is controlled by sending commands to its TCP IP address

 Allows multiple servers and clients to run simultaneously.

 Royalty free distribution with your compiled application.

 Evaluation versions are fully functional. No unlock code is required.

 Is fully thread safe.

 Supports 32-bit and 64-bit Windows through Window 10.

 Works with all versions of Delphi including Delphi 2005 through 2007, Embarcadero Delphi 2009 -

2010, and Embarcadero Delphi XE through XE 10.

 Does not depend on support libraries. Makes calls to core Windows API functions only.

 Can be used with any program (in any language) capable of calling Windows API functions.

 Can be purchased with (or without) ANSI C source code.

 Updates are free for one year (Source code updates are separate).

 License covers all programming languages (C/C++, VB, Delphi, etc).

 Free unlimited one-year technical support for registered users.

 Documentation online as well as in printable format.

 5

A selection of Delphi (Borland /CodeGear/Embarcadero) example programs with full source code is included.

Refer to Section 6 for more details on each of the example projects.

SendUDP.dpr Transmits a UDP data packet to RecvUDP.

RecvUDP.dpr Receives multicast UDP packets from SendUDP.

ver_prj.dpr Displays CSC version and build.

client_prj.dpr Example client program.

server_prj.dpr Example server program.

auth_client_prj.dpr Authenticating client.

auth_server_prj.dpr Authenticating server.

Control_prj.dpr Controls device; sends commands to its IP address.

download_prj.dpr Example download (from web) program.

File_Server_prj.dpr Example file server.

File_Client_prj.dpr Example file client.

POP3Stat.dpr Returns the number of emails waiting on POP3 server.

uNetTime.dpr UDP client gets Network Time.

 6

1.2 Documentation Set

This is the first manual (CSC_4D) in the set.

 CSC4D Programmer’s Manual (CSC_4D.PDF)

 CSC User’s Manual (CSC_USR.PDF)

 CSC Reference Manual (CSC_REF.PDF)

The CSC_4D Programmer’s Manual (CSC_4D) is the language specific (Delphi) manual. All language

dependent programming issues are discussed in this manual. Information needed to compile programs in a

Delphi environment is provided in this manual.

The CSC User’s Manual (CSC_USR) discusses language independent issues. Information on Client /

Server protocols as well as purchasing and license information is provided in the manual.

The CSC Reference Manual (CSC_REF) contains details on each individual CSC function.

The documentation is also provided on our web site at

 http://www.marshallsoft.com/csc4d.htm

1.3 Example Program

The following code segment attempts to connect to the server.

 {connect to server}

 DataSock := cscClient(HostName, HostPort);

 if DataSock < 0 then

 begin

 DisplayLine(client.mHistory, 'cscClient fails');

 DisplayError(client.mHistory, DataSock);

 exit;

 end;

 {connected: now wait 7 seconds for greeting message from server}

 Call DisplayText(client.mHistory, "Awaiting greeting message...")

 Code := cscAwaitData(DataSock, 7000);

 if Code = 0 then

 begin

 DisplayLine(client.mHistory, 'Greeting message not seen');

 exit;

 end;

Also see the example programs in the \CSC4D\APPS sub-directory.

http://www.marshallsoft.com/csc_4d.pdf
http://www.marshallsoft.com/csc_usr.pdf
http://www.marshallsoft.com/csc_ref.pdf
http://www.marshallsoft.com/csc4d.htm

 7

1.4 Installation

(1) Before installation of CSC4D, a Delphi compiler should already be installed.

(2) Unzip CSC4D71.ZIP (evaluation version) or CSCxxxxx.ZIP (registered version: xxxxx is the

Customer ID) using any Windows unzip program.

(3) Run the installation program SETUP.EXE which will install all CSC4D files. SETUP will also copy

CSC32.DLL and CSC64.DLL to the Windows directory. Note that no DLL registration is required.

1.5 Uninstalling

Uninstalling CSC4D is very easy. First, delete the CSC4D project directory created when installing

CSC4D. Second, delete CSC32.DLL/CSC64.DLL from the Windows directory, typically C:\WINDOWS

for Windows 95/98/Me/2003/2012/XP/VISTA/Win7/Win8 or C:\WINNT for Windows NT/2000.

1.6 Pricing

A developer license for the Client/Server Communications Library can be purchased for $119 USD (or

$199 USD with source code [ANSI C] to the library DLL). Purchasing details can be found in Section 1.4,

"How to Purchase", of the CSC User’s Manual.

 Also see INVOICE.TXT or http://www.marshallsoft.com/order.htm

1.7 Updates

When a developer license is purchased for CSC, the developer will be sent a registered DLL plus a license

file (CSCxxxxx.LIC). The license file can be used to update the registered DLL for a period of one year

from purchase. Updates can be downloaded from

 http://www.marshallsoft.com/oem.htm

After one year, the developer license must be updated to be able to download updates. The license can be

updated for:

 $33 if the update is ordered within one year of the original purchase (or previous update).

 $55 is the update is ordered between 1 and 3 years of the original purchase (or previous update).

 $77 if the update is ordered after three years of the original purchase (or previous update).

The update price includes technical support for an additional year. Note that the registered DLLs, (CSC32.

DLL and CSC64.DLL) never expire. If source code was previously purchased, updates to the source code

can be purchased for $40 along with the license update.

http://www.marshallsoft.com/order.htm
http://www.marshallsoft.com/oem.htm

 8

2 CSC Library Overview

The Client/Server Communications Library (CSC) has been tested on multiple computers running

Windows XP through Windows 10

The CSC4D library will work with all versions of Delphi (Borland/CodeGear/Embarcadero) including

Delphi for Win64, Delphi 2010, and Embarcadero Delphi XE through XE8. The CSC32.DLL/CSC64.DLL

functions may be called by any Windows program capable of calling the Windows API provided that the

proper declaration file is used.

The SETUP installation program will copy the Lib’s and DLLs to the Windows directory. Refer to

Section 1.4 "Installation". After SETUP is run, the CSC4D files are copied to the directory specified

(default \CSC4D). Three sub-directories are created, as follows:

 DOCS – All documentation files

 APPS – All example code

 DLLS – All DLL’s

2.1 Dynamic Link Libraries

The Client/Server Communication Library component is a Win32 dynamic link library (DLL). A DLL

is characterized by the fact that it need not be loaded until required by an application program and that only

one copy of the DLL is necessary regardless of the number of application programs that use it. Contrast

this to the traditional static library that is bound to each and every application that uses it at link time.

An important advantage that DLLs have over other "popular" library formats such as VBX or OCX is that

DLLs are callable by all Windows applications. Since DLLs are the building blocks of the Windows

Operating System, they will not be replaced by a "newer technology".

The following files can be found in the DLL sub-directory when SETUP is run:

 csc32.dll - Win32 version of CSC

 csc64.dll - Win64 version of CSC

2.2 Keycode

CSC32.DLL has a keycode encoded within it. The keycode is a 9 or 10 digit decimal number (unless it is

0), and will be found in the file KEYCODE.PAS. The keycode for the evaluation version is 0. You will

receive a new key code when registering. The KEYCODE is passed to cscAttach.

If an error message (value -74) is returned when calling cscAttach , it means that the keycode in the CSC

application does not match the keycode in the DLL. After registering, it is best to remove the evaluation

version of the CSC32.DLL and CSC64.DLL from the Windows search.

2.3 Win32 STDCALL and DECLSPEC

CSC is written in ANSI C and is compiled using the _stdcall and _declspec keywords. This means that

CSC uses the same calling conventions and file naming conventions as the Win32/Win64 API. In

particular, function names are NOT decorated. There are no leading underscores or trailing "@size"

strings added to function names.

The CSC32.DLL and CSC64.DLL functions may be called from any Windows application program

capable of calling the Windows API provided that the proper declaration file is used.

 9

2.4 Adding CSC4D to Your 32-bit Project

Copy CSC32.PAS to the same directory (folder) as the application program to which you want to add CSC

code. The files will be in the \APPS directory (folder) created when SETUP was run, usually C:\

CSC4D\APPS.

Add CSC32 and keycode to the "uses" clause in the application source program (*.PAS). For example,

 uses

 csc32, keycode, ...

Alternatively, the above “keycode” can be left out and instead the numerical keycode value (found in

keycode.pas) can be pasted directly into the call to cscAttach. Also add csc32 to the project file

(*.DPR). For example,

 uses

 csc32 in 'csc32.pas', ...

 {pass the key code [0 for evaluation version]}

 Code := cscAttach(1, 0, 123456789);

2.5 Adding CSC4D to Your 64-bit Project

If you are using Delphi XE2/XE3/XE4/XE5/XE6/XE7/XE8 to compile 64-bit projects, unzip X64.ZIP in

the \CSC4D\APPS directory that contains the 64-bit versions of the example programs.

Copy CSC64.PAS to the same directory (folder) as the application program to which you want to add CSC

code. The files will be in the \APPS directory (folder) created when SETUP was run, usually C:\

CSC4D\APPS.

Add CSC64 and keycode to the "uses" clause in the application source program (*.PAS). For example,

 uses

 csc64, keycode, ...

Alternatively, the above “keycode” can be left out and instead the numerical keycode value (found in

keycode.pas) can be pasted directly into the call to cscAttach. Also add csc64 to the project file

(*.DPR). For example,

 uses

 csc64 in 'csc64.pas', ...

 {pass the key code [0 for evaluation version]}

 Code := cscAttach(1, 0, 123456789);

 10

2.6 Example Protocol

Several of the Client/Server Communications Library demonstration programs use the following

example protocol:

(1) The server must be running first at a specified IP address using a specified port number known to both

client and server. A host name may be used instead of an IP address. The server waits for a connection

attempt by a client.

(2) The client attempts to connect to the server.

(3) The server accepts the connection from the client, and then sends its greeting message, such as:

"CSC Example Server"

(4) The client receives the server's greeting message.

(5) The client sends a request (command) string to the server.

(6) The server receives the client's request.

(7) The server sends back its response string.

(8) Repeat steps (5), (6), and (7) until done.

(9) The client closes its connection to the server.

The server responds with the following response strings when presented with the corresponding requests

(REQ) from the client:

 REQ Response String Request Example Response Example

 WHO Sends name of the server. WHO W_SERVER

 VER Sends server version #. VER 7.1

 BYE OK (then disconnects) BYE OK

The above protocol is just an example. The programmer can create whatever protocol is required. Request

strings can be any length, although it is best to keep them as short as possible..

Also refer to PROTOCOL.TXT in the \CSC4D\APPS directory.

2.7 Error Display

The error message text associated with CSC error codes can be displayed by calling cscErrorText.

 procedure DisplayError(Memo: TMemo; ErrCode : Integer);

 var

 Code : Integer;

 Text : String;

 Ptr : PChar;

 begin

 if ErrCode < 0 then

 begin

 GetMem(Ptr, 128);

 Code := cscErrorText(ErrCode, Ptr, 127);

 if Code > 0 Then DisplayLine(Memo, StrPas(Ptr));

 Text := Format('CSC error %d.',[ErrCode]);

 FreeMem(Ptr,128);

 DisplayLine(Memo,Text);

 end

 end;

 11

3 Compiler Issues

The Client/Server Communications Library for Delphi component library supports all versions of

Borland/CodeGear /Embarcadero) Delphi for Win32/Win64 as follows:

 Borland Delphi 2, 3, 4, 5, 6, 7 and 8.

 Borland Delphi 2005 (Delphi 9)

 Borland Delphi 2006

 Borland Turbo Delphi

 CodeGear Delphi 2007

 CodeGear Delphi 2009

 CodeGear Delphi 2010

 Embarcadero Delphi XE through XE 10.

3.1 Delphi Versions

Applications written with Delphi link with the same identical DLL's as for applications written in all other

supported languages, such as C/C++ and Visual Basic.

Beginning with Delphi 2003, Delphi has two "personalities": (1) Win32 Delphi and (2) Delphi for .NET.

Win32 Delphi programs are a continuation of the Delphi language as seen in earlier versions of Delphi.

Delphi .NET is a version of Delphi designed to use the Microsoft .NET Framework.

3.1.1 Delphi 1

Delphi version 1 generates Win16 code. CSC32.DLL is a 32-bit DLL and cannot be called from 16-bit

application programs such as those compiled by Delphi 1.

3.1.2 Delphi 2

Delphi version 2 and above generates WIN32 code. Therefore, applications written using Delphi 2 will

link with CSC32.DLL. Strings can be much larger than 255 bytes.

Delphi 2 seems to have a problem with some of the string functions. Although the default is "large

strings", some of the string functions (such as StrPas) copy only 255 bytes.

3.1.3 Delphi 3, 4, 5, and 6.

There are no known Delphi problems impacting our example programs in Delphi version 3 and above.

Applications written using Delphi 3 and above will link with CSC32.DLL

3.1.4 Delphi 7.

Beginning in Delphi 7, the filename of a unit must match the unit name.

 12

3.1.5 Delphi 2005 through 2010

Delphi 2005 though Delphi 2010 are Borland's (Codegear) latest Delphi product with support for both

Win32 and Microsoft .NET Framework. Application programs written using Delphi 2005, 2006, 2007,

2009, 2010, and XE will use CSC32.DLL.

When loading Win32 Delphi projects with Delphi 2005/2006/2007/2009/2010/XE, a window entitled

"Project Upgrade" may be displayed. In this case, the project must be upgraded before it can be opened:

 Please select which project type you wish to target:

 () Delphi for .NET

 () Delphi for Win32

3.1.6 Delphi XE2 through XE 10

Delphi XE2 through XE1 can create both 32-bit and 64-bit executables. Note that although a 32-bit

executable can run on both 32-bit and 64-bit Windows machines, a 64-bit executable can run only on a 64-

bit Windows machine.

Step 1: Edit Files

1. Open file *_PGM.PAS using any text editor.

2. Replace CSC32 with CSC64 in the "uses" clause.

3. Open file *_PRJ.DPR using any text editor.

4. Replace CSC32 with CSC64.

Step 2: Delete Win32 files

1. Delete all *.DCU files that may have been created under Win32 Delphi.

2. Delete all *.DPROJ files that may have been created under Win32 Delphi.

Step 3: Change Win32 to Win64 in Delphi XE2/XE3/XE4 Project Manager

Start Delphi XE (XE2 through XE10), load the project *_PRJ.DPR, then open the Project Manager found

under "View" / "Project Manager" on the Delphi menu bar.

1. Right click on "Target Platforms (Win32)" and click on "Add Platform...".

2. When the "Select Platform" window is displayed, click "64-bit Windows".

3. Click [+] box to left of "Target Platforms (Win32)"

4. Right click on "32-bit Windows", then click "Remove Platform"

You must also convert display.pas by replacing all reference to csc32 with csc64.

The file x64.zip contains the example programs after modification to x64.

 13

3.2 Compiling Programs

The example programs are compiled from the Delphi development environment using the provided Delphi

project files (*.DPR).

The example programs will compile and run with any version of Delphi. They have each been tested using

Delphi 1 through Delphi 5, Delphi 2005 through Delphi 2007, Embarcadero Delphi 2009 & 2010,

Embarcadero Delphi XE, and Embarcadero Delphi XE2 through XE10. The file x64.zip contains the

example programs after modification to x64.

Respond with "OK" to the message "Cannot find resource file..." and it will be properly rebuilt.

See Section 4 "Example Programs" for more details on each of the example programs.

3.3 Compiling CSC Source

The source code for the CSC DLL’s is written in standard ANSI C (CSC.C), and has been compiled using

Microsoft Visual C++. Source code for the CSC library can be purchased at the same time as a CSC

developer license is purchased.

CSC may also be compiled using Borland C/C++ or Watcom C/C++ compilers. If CSC.C is compiled

using Borland or Watcom compilers, the resulting DLL can only be used by applications compiled with the

same compiler, unless the STDCALL and DECLSPEC keywords are specified.

For more information on the C/C++ version of CSC, download the latest version of CSC4C from our web

site at http://www.marshallsoft.com/csc4c.htm

http://www.marshallsoft.com/csc4c.htm

 14

4 Example Programs

The DISPLAY.PAS unit is used to display text in Delphi memos. DISPLAY.PAS contains 4 procedures:

 DisplayChar : Displays character.

 DisplayString : Displays string.

 DisplayLine : Displays line.

 DisplayError : Displays error message.

4.1 Delphi Example Programs

The example programs are designed to demonstrate the various capabilities of CSC4D. The best way to

become familiar with CSC4D is to study and run the example programs.

The example programs can be compiled with any version of 32-bit (or 64-bit) Delphi. All example

programs are located in the \CSC4D\APPS sub-directory.

The CSC units used by the example programs are:

 CSC32.PAS : Win32 CSC unit.

 CSC64.PAS : Win64 CSC unit.

4.1.1 VERSION

The VERSION example program displays the CSC version number, build, and registration string. This is

the first program to compile and build since it verifies that CSC32.DLL (or CSC64.DLL) is installed

properly.

The VERSION project files are:

 VER_PRJ.DPR : Delphi project file.

 VER_PGM.DFM : Delphi form file.

 VER_PGM.PAS : Program source code.

4.1.2 SendUDP

The SendUDP example program transmits a UDP data packet. It is used to test the RecvUDP program.

The SendUDP project files are:

 SendUDP_PRJ.DPR : Delphi project file.

 SendUDP_PGM.DFM : Delphi form file.

 SendUDP_PGM.PAS : Program source code.

Start RecvUDP before SendUDP (on different computers).

 15

4.1.3 RecvUDP

The RecvUDP example program receives multicast UDP data packets. Test using the SendUDP program.

The RecvUDP project files are:

 RecvUDP_PRJ.DPR : Delphi project file.

 RecvUDP_PGM.DFM : Delphi form file.

 RecvUDP_PGM.PAS : Program source code.

Start RecvUDP before SendUDP (on different computers).

4.1.4 CLIENT

CLIENT is an example client program that operates as a client that connects to the example server

program.

The CLIENT project files are:

 CLIENT_PRJ.DPR : Delphi project file.

 CLIENT_PGM.DFM : Delphi form file.

 CLIENT_PGM.PAS : Program source code.

4.1.5 SERVER

SERVER is an example server program that accepts connections from the example client program.

SERVER accepts a maximum of 3 connections (clients) at any one time.

The SERVER project files are:

 SERVER_PRJ.DPR : Delphi project file.

 SERVER_PGM.DFM : Delphi form file.

 SERVER_PGM.PAS : Program source code.

4.1.6 File_Server

The File_Server example server program can accept multiple connections and allows clients to download

files. Files are encrypted when transmitted. See the comments in File_Server_Pgm.pas or see

PROTOCOL.TXT for a description of the protocol used.

The File_Server project files are:

 File_Server_PRJ.DPR : Delphi project file.

 File_Server_PGM.DFM : Delphi form file.

 File_Server_PGM.PAS : Program source code.

 16

4.1.7 File_Client

The File_Client example client program connects to the File_Server example server program in order to

download files. Files are decrypted when received. See the comments in File_Client_Pgm.pas or see

PROTOCOL.TXT for a description of the protocol used.

The File_Client project files are:

 File_Client_PRJ.DPR : Delphi project file.

 File_Client_PGM.DFM : Delphi form file.

 File_Client_PGM.PAS : Program source code.

4.1.8 Auth_Server

The Auth_Server example program demonstrates how server-side authentication (challenge/response) is

done in CSC4D. Auth_Server accepts connections from Auth_Client.

The File_Server project files are:

 Auth_Server_PRJ.DPR : Delphi project file.

 Auth_Server_PGM.DFM : Delphi form file.

 Auth_Server_PGM.PAS : Program source code.

4.1.9 Auth_Client

The Auth_Client example program demonstrates how client-side authentication (challenge/response) is

done in CSC4D. Auth_Server accepts connections from Auth_Client.

The File_Client project files are:

 Auth_Client_PRJ.DPR : Delphi project file.

 Auth_Client_PGM.DFM : Delphi form file.

 Auth_Client_PGM.PAS : Program source code.

4.1.10 Download

Download is an example client that connects to the MarshallSoft web site (HTTP server) and downloads a

file from the ./files directory.

The Download project files are:

 Download_PRJ.DPR : Delphi project file.

 Download_PGM.DFM : Delphi form file.

 Download_PGM.PAS : Program source code.

4.1.11 POP3Stat

POP3Stat is an example client that logs onto a POP3 account and returns the number of emails waiting.

The POP3Stat project files are:

 POP3Stat_PRJ.DPR : Delphi project file.

 POP3Stat_PGM.DFM : Delphi form file.

 POP3Stat_PGM.PAS : Program source code.

 17

4.1.12 uNetTime

uNetTime is an example UDP client that connects to a Network Time Server (on well known port 37) and

gets the network time (seconds since 1 January 1900 GMT) from the server. The default server is

time-A.timefreq.bldrdoc.gov

The uNetTime project files are:

 uNetTime_PRJ.DPR : Delphi project file.

 uNetTime_PGM.DFM : Delphi form file.

 uNetTime.PGM.PAS : Program source code.

4.1.13 Control

Control is an example console mode client that connects to a relay device that is controlled by sending

commands to its TCP IP address..

The Control project files are:

 Control_PRJ.DPR : Delphi project file.

 Control_PGM.DFM : Delphi form file.

 Control.PGM.PAS : Program source code.

 18

5 Revision History

CSC is written in ANSI C. All language versions of CSC (C/C++, Visual Basic, and Delphi) use the same

identical DLL.

Version 3.0: November 1, 2005

 Initial Delphi release of CSC.

Version 4.0: April 25, 2007

 Added CSC_GET_DAYS_LEFT to cscGetInteger

 Added CSC_FILE_TOO_LARGE error code.

 Allow multiple listen sockets.

 Changed: cscAttach, cscAwaitConnect, cscAcceptConnect, cscServer

 Removed: cscSendMessage

 Added: cscDataMessage, cscConnectMessage

 Increased NBR_DATA_SOCKS from 128 to 1024.

 Modified CSC_SET_FILE_PATH to also set path for individual data socket.

 Append "-1", "-2", etc to filename if file already exists for cscGetFile

 Added VS_SET_LINGER to cscSetInteger

 Default linger time reduced to 200 ms

 cscAttach now returns “Days Left” (for evaluation version)

Version 5.0: October 9, 2008

 cscSetInteger(Sock, CSC_SET_LINGER, LingerTime) returns LingerTime

 Added cscLaunch()

 Increased NBR_LISTEN_SOCKS to 64.

 Added GetPrice example program.

 Added append mode (CSC_SET_FILE_APPEND).

 Added overwrite mode (CSC_SET_FILE_OVERWRITE).

 Added cscCryptoGetFile and cscCryptoPutFile

 Added cscCryptoGetData and cscCryptoPutData

 Added cscFillRandom

 Added CSC_DATA_SIZE error code (BufLen too big)

 Added CSC_SET_DELAY_TIME

 Increased TCP buffer size to 1500

 Socket portion rewritten for significantly faster speed.

Version 6.0: August 5, 2009

 Supports Win64 (although Delphi thru 2010 does not)

 Added cscPutPacket and cscGetPacket.

 Added cscCryptoPutPacket and cscCryptoGetPacket.

 Added CSC_SET_MAX_PACKET_SIZE and CSC_GET_MAX_PACKET_SIZE.

 Changed: NBR_DATA_SOCKS to 1000, NBR_LISTEN_SOCKS to 50.

 Changed: MAX_FILE_BUFFER_SIZE to 30000.

 Changed: DEFAULT_FILE_BUFFER_SIZE to 10000.

 Added CSC_SET_PAD_TX_INDEX and CSC_SET_PAD_RX_INDEX.

 Added cscDataCRC and cscFileCRC.

 cscGetInteger(Chan, CSC_GET_SOCKET) returns actual socket.

 Added cscCreateUDP, cscGetUDP, cscCreateUDP.

 Added cscNetToHost32.

 19

Version 6.1: September 8, 2010

 Fixed: cscCreateUDP not saving socket so not closed later.

 Changed: default connect timeout from 60 seconds to 10 seconds.

 Changed: Pass RotateCount < 0 to cscResponse to return rightmost 31 bits of encrypted binary value.

 Fixed: vSock slot freed when connect fails.

 Added: cscReadSize() returns # bytes ready to be read.

 Added MakeDotted4 to make dotted IP address from its 4 components.

 Added CONTROL example program.

Version 6.2: March 5, 2012

 Added support for Delphi XE2

 Added function cscMakeDotted4()

 Corrected Julian date function

 Added additional diagnostics (to detect congestion) in csc-vs.c

 Fixed cscReadSize(), worked only for vSock 0.

 Fixed CSC_SET_TIMEOUT_VALUE not being passed to csc-vs

 Fixed cscChallenge uses leading zeros to pad to 8 chars

 Changed DEFAULT_PACKET_TIMEOUT to 35000

 Added error text for VS_* errors.

 Added functions cscPutFileExt & cscCryptoPutFileExt

 Added functions cscGetFileExt & cscCryptoGetFileExt

 Fixed problem receiving file with same name from two clients

Version 6.3: July 26, 2013

 Added support for Delphi XE3 and XE4

 Fixed: cscCryptoGetFileExt and cscCryptoPutFileExt were not using local file path.

 Added: cscFillRandom(*,*,Seed) uses random seed if passed seed is zero.

 Added: cscSetInteger(Port, CSC_SET_CLOSE_TIMEOUT, Tics) sets max tics before socket is forced

closed.

 Added: New example programs that use AES (Advanced Encryption Standard).

 Fixed: cscResolve was sometimes returning bogus IP addresses after the first.

Version 7.0: April 15, 2015

 Added cscMulticast() that receives multicast UDP packets.

 Added cscClientExt() that binds to a local IP address (for multi-homed computers)

 Fixed CSC_BAD_OFFSET error sometimes incorrectly returned by crcCryptoPutFile().

Version 7.1: February 7, 2018

 Fixed problem with cscFileCRC()

 Fixed problem with cscCryptoPutFileExt() - data was being incorrectly appended.

 Added more internal diagnostics.

 Added cscTestDotted() - returns TRUE if dotted address in correctly formatted.

 Fixed problem in cscRelease() - log file was being closed prematurely.

 Increased MAX_DATA_SIZE from 30000 to 50000 bytes.

 Added CSC_SET_SOCK_REUSE [to cscSetInteger], enabling an app to close the listening socket and

immediately reopen without error.

