
 1

Client / Server

Communications

Users Manual

(CSC_USR)

Version 7.1

 January 11, 2018

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2018

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815 USA

web: www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 Application Categories for CSC Programs Page 4

 1.2 Documentation Set Page 5

 1.3 Technical Support Page 6

 1.4 How to Purchase Page 7

 1.5 Updates Page 8

 1.6 Customer ID Page 9

 1.7 License File Page 9

 1.8 Distribution Page 9

2 CSC Application Notes Page 10

 2.1 Keycode Page 10

 2.2 Dynamic Link Library Page 10

 2.3 GUI and Console Mode Page 10

 2.4 Getting Started Using CSC Page 10

 2.5 Development Languages Supported Page 11

 2.6 Converting From CSC Version 3 to Version 4 Page 12

 2.7 Example Client/Server Protocol Page 13

 2.8 Stream Data I/O Page 14

 2.9 Stream Packet I/O Page 14

 2.10 File Transfer Page 14

 2.11 Encryption Page 15

 2.12 Using the AES Module Page 16

 2.13 Direct Device Control Page 17

3 TCP and UDP Sockets Page 18

 3.1 Servers Page 19

 3.2 Clients Page 19

4 Challenge and Response Authentication Page 20

5 Resolving Problems Page 21

6 Versions of CSC Page 22

 6.1 Evaluation Version Page 22

 6.2 Academic Version Page 22

 6.3 Professional Version Page 22

7 Legal Issues Page 23

 7.1 License Page 23

 7.2 Warranty Page 23

8 CSC Function Summary Page 24

9 CSC Error Return Code List Page 25

 3

1 Introduction

The Client / Server Communications Library (CSC) is a component DLL library used to create server

and client programs that can communicate with each other across any TCP/IP or UDP network such as the

Internet or a private network (intranet or LAN [local area net]). The CSC component library uses the

Windows sockets API for all communication.

A simple interface provides the capability to quickly develop Client/Server software applications using

TCP/IP or UDP protocols.

CSC can be used to communicate with other CSC programs or used to communicate with other TCP

programs such as DNS, POP3, SMTP, FTP, HTTP, etc. CSC provides the capability to connect to

devices such as a relay device, scale device, GPS device or embedded computer device that is controlled

by sending commands to its TCP IP address. CSC can also be used to encrypt and decrypt data and files

and can also be used with the MarshallSoft AES Encryption Library (AES) for strong encryption.

Client/Server Communications functions can easily be called from any program written in any language

(such as C/C++, C++ .NET, Visual C#, Delphi, Visual Basic, VB.NET, PowerBASIC, Visual FoxPro,

dBase, Xbase++, COBOL) that is capable of calling Windows API functions. Both Win32 and Win64

DLLs are provided.

The User’s Manual applies to the Client/Server Communications Library (CSC) for all supported

programming languages. It discusses Client/Server TCP/IP processing, language independent

programming issues, as well as purchasing and licensing information.

We have versions of the Client/Server Communications SDK for C/C++ (CSC4C), Visual Basic

(CSC4VB), Visual FoxPro (CSC4FP), Delphi (CSC4D), and FoxPro (CSC4FP). Purchase a developer

license for CSC for one software development language and use it with all others. All versions of CSC use

the same DLLs (CSC32.DLL or CSC64.DLL); however, the examples provided for each version are

written and tested for the specified computer development language. We also have declaration files and

example programs for a few other languages.

The Client/Server Communication DLLs will work with 32-bit and 64-bit Windows: Windows XP through

Windows 10.

Fully functional evaluation versions of our Client/Server Communications software components are

provided so that the developer can test the CSC library in their environment. The evaluation version as

well as a list of the many Client/Server Communications library features provided can be found at:

http://www.marshallsoft.com/client-server-communication.htm

http://www.marshallsoft.com/aes.htm
http://www.marshallsoft.com/client-server-communication.htm

 4

1.1 Application Categories for CSC Programs

CSC program can be used in several classes of applications. Some ideas follow:

(1) Client and Server Programs - designed to communicate with each other.

 Chat server & client.

 File transfer server & client (such as an FTP replacement).

 Secure and private messaging.

(2) Client Programs - designed to talk to TCP servers on the net.

TCP Examples

 POP3 (or IMAP) client that gets # emails waiting on server.

 HTTP (web) client that downloads pages (or files) from web site.

 SMTP client that sends a simple text message.

 Control external devices via their TCP/IP ports (relays, scales, etc).

UDP Examples

 DNS Client that gets the MX email record from a DNS server.

 Network Time Client that gets current time from a Network Timer Server.

(3) Proxy Programs.

 SMTP proxy that extracts a copy of all recipient addresses for outgoing email.

 POP3 proxy that filter incoming email for spam.

 HTTP (web) proxy used to filter content.

 5

1.2 Documentation Set

The complete set of documentation is provided in Adobe PDF format. This is the second manual

(CSC_USR.PDF) in the set.

 CSC_4x Programmer’s Manual (CSC_4x.PDF)

 CSC User’s Manual (CSC_USR.PDF)

 CSC Reference Manual (CSC_REF.PDF)

The CSC_4x Programmer’s Manual is the programming language specific manual. All language

dependent programming issues including installation, compiling and example programs are discussed in

this manual. The language specific manuals are as follows:

[NAME] [DESCRIPTION]

CSC_4C : CSC Programmer's Manual for C/C++

CSC_4VB : CSC Programmer's Manual for Visual Basic

CSC_4D : CSC Programmer's Manual for Delphi

CSC_4FP : CSC Programmer's Manual for Visual FoxPro

CSC_4DB : CSC Programmer's Manual for Visual dBase

CSC_4XB : CSC Programmer's Manual for XBase++

The CSC User’s Manual (CSC_USR.PDF) discusses client/server programming issues. License and

purchase information is also provided. Read this manual after reading the CSC Programmer’s Manual.

The CSC Reference Manual (CSC_REF.PDF) contains details on each individual CSC function.

All documentation can also be accessed online at
http://www.marshallsoft.com/client-server-communication.htm

http://www.marshallsoft.com/csc_4c.pdf
http://www.marshallsoft.com/csc_4vb.pdf
http://www.marshallsoft.com/csc_4d.pdf
http://www.marshallsoft.com/csc_4fp.pdf
http://www.marshallsoft.com/csc_4db.pdf
http://www.marshallsoft.com/csc_4xb.pdf
http://www.marshallsoft.com/csc_usr.pdf
http://www.marshallsoft.com/csc_ref.pdf
http://www.marshallsoft.com/client-server-communication.htm

 6

1.3 Technical Support

We want you to be successful in developing applications using the Client/Server Communications Library!

We are committed to providing the best, most robust library that we can. If you have any suggestions or

comments, please let us know.

If you are having a problem using CSC, refer to Section 5.0 “Resolving Problems”. If you still cannot

resolve your problem, email us at

 support@marshallsoft.com

To avoid having your email deleted by our Spam scanners, begin the subject of your email with "CSC4C",

“CSC4VB”, “CSC4D” or “MSC HELP”. Zip up any attachments and send plain ASCII text email only.

The latest versions of our products are available on our web site at

 http://www.marshallsoft.com

and on our anonymous FTP site at

 ftp://ftp.marshallsoft.com/pub

Registered users can update (for a period of one year) to the latest CSC DLLs at

 http://www.marshallsoft.com/update.htm

http://www.marshallsoft.com/
ftp://ftp.marshallsoft.com/pub
http://www.marshallsoft.com/update.htm

 7

1.4 How to Purchase

A developer license for the Client/Server Communication Library (CSC) may be purchased for $119

(USD) for electronic (email) delivery, or $199 (USD) with ANSII C source code for the DLLs. This price

is good for one year from the release date.

The fastest and easiest way to order is on our web site at

 http://www.marshallsoft.com/order.htm

You can also order by completing INVOICE.TXT (pro forma invoice) and emailing (info [at]

marshallsoft.com), mailing (see our address at top), or faxing it to us. Our fax number will be provided

upon request.

Multiple copy discounts (3 or more) and site licenses are available. Please call for details.

We accept American Express, VISA, MasterCard, Discover, PayPal, checks in US dollars drawn on a US

bank, and International Postal Money Orders (such as Western Union).

Print the file INVOICE.TXT if a "Pro Forma" invoice is needed.

The registered package includes:

 CSC32 and CSC64 (for 64-bit programming environment) Library without the “evaluation info”

screen.

 Free downloadable updates to the registered DLLs for one (1) year.

 Free technical support by email and telephone for one (1) year.

http://www.marshallsoft.com/order.htm

 8

1.4.1 Academic Discount

We offer an "academic price" of 40% off the normal price for prepaid email orders to faculty and full time

students currently enrolled in any accredited high school, college, or university. The software must be

used for educational purposes. The academic discount does not apply to source code.

To qualify for the discount, your school must have a web site and you must have an email address at your

school that is not forwarded. When ordering, ask for the "academic discount", or enter "student at" (or

"faculty at") and your schools web site address (URL) in the comments field of the order form on our web

site order page. Your order will be sent to your email address at your school.

This offer is not retroactive and cannot be used with any other discount. Products bought with academic

pricing cannot be used for any commercial purpose nor can the CSC DLL be distributed.

1.4.2 Source Code

Source code is available for the purpose of re-compiling CSC32.DLL and CSC64.DLL. Source code for

the DLL library is standard ANSI C. The source code is copyrighted by MarshallSoft Computing and may

not be released in whole or in part.

There are two ways to order Source Code for the Client/Server Communication Library SDK.

(1) Source Code can be ordered at the same time as the Developer’s License for $199 (for both).

(2) Source Code can be ordered within one year of purchasing a Developer's License for $100. After one

year, a Developer’s License update ($33, $55 or $77) must be purchased prior to purchasing the

source code.

1.5 Updates

When a developer license is purchased for the Client/Server Communications SDK, the developer will

receive the registered DLLs plus a license file (CSCxxxx.LIC) that can be used to update the registered

DLLs (does not include source code) for a period of one year from purchase. Updates can be downloaded

from

 http://www.marshallsoft.com/update.htm

After one year, the developer license must be updated to be able to download updates. The developer

license can be updated for $33 if ordered within one year from the original purchase (or previous update).

After one year, licenses can be updated for $55 ($77 after 3 years). A license update includes an additional

year of technical support.

Source code previously purchased may be updated for $40 in addition to the cost of the update ($33, $55

or $77).

Note that the registered CSC DLL does not expire.

Also see the file UPDATES.TXT.

http://www.marshallsoft.com/update.htm

 9

1.6 Customer ID

The customer ID is the 4 or 5 digits following the product name (CSC) in the license file. For example,

customer 12345 would receive license file CSC12345.LIC. Provide the Customer ID in the Subject field

of an email when contacting us for technical support (CSC4C 12345).

1.7 License File

A license file, CSCxxxxx.LIC, where “xxxxx” is the 5 digit customer ID is provided with each developer

license. The license file is an encrypted binary file used for updating CSC as explained in Section 1.5

“Updates”. The license file is required in order to create (or update) the registered DLLs. The license file

can be found in the /DLLS directory created after SETUP is run.

1.8 Distribution

In order to run an application (that calls CSC functions) on another computer, the file CSC32.DLL or

CSC64.DLL must be copied to the Windows directory of the other computer. The Windows directory is

normally C:\WINDOWS. Do not attempt to "register" the DLLs.

 10

2 CSC Application Notes

2.1 Keycode

When a developer license is purchased, the developer will receive a new set of DLLs and a keycode for the

CSC DLLs. Pass this keycode as the argument to cscAttach. The keycode will be found in the file named

“KEYCODE”. The keycode for the evaluation version is 0. The keycode for the registered version will be a

unique 9 or 10 digit number. Note: The keycode is NOT the same as the Customer ID/Registration number.

2.2 Dynamic Link Library

The Client / Server Communications Library SDK includes a Win32 [CSC32.DLL] and Win64

[CSC64.DLL] dynamic link library (DLL).

The CSC object files CSC32.OBJ and CSC64.OBJ are also included for use with C/C++ programs.

2.3 GUI and Console Mode

CSC functions can be called from WIN32/WIN64 console mode programs as well as GUI programs. A

"console mode" program is a Windows 95/98/Me/NT/2000/2003/2012/XP/VISTA/WIN7/WIN8

Win32/Win64 command line program running in a command window.

2.4 Getting Started Using CSC

The first Client Server Communications function that should be called is cscAttach, which initializes the

CSC library and allocates necessary resources. The function cscAttach is typically called in the

initialization section of a CSC application and should be called just once. The function cscRelease should

be called before exiting the CSC application.

The best way to get familiar with CSC is to try out one of the example programs. The example programs

are described in the CSC4C (C/C++), the CSC4VB (Visual Basic), the CSC4FP (Visual FoxPro) and the

CSC4D (Delphi) Programmer's Manual:

 CSC_4C CSC Programmer's Manual for C/C++

 CSC_4VB CSC Programmer's Manual for Visual Basic

 CSC_4D CSC Programmer’s Manual for Delphi

 CSC_4FP CSC Programmer’s Manual for Visual FoxPro

 CSC_4XB CSC Programmer’s Manual for Xbase++

 CSC_4DB CSC Programmer’s Manual for Visual dBASE

After installing CSC, compile and run the CSCVER example program, which should display the CSC

version number and registration string. Once CSCVER runs compile and run the SERVER and CLIENT

example programs, which communicate with each other.

http://www.marshallsoft.com/csc_4c.pdf
http://www.marshallsoft.com/csc_4vb.pdf
http://www.marshallsoft.com/csc_4d.pdf
http://www.marshallsoft.com/csc_4fp.pdf
http://www.marshallsoft.com/csc_4xb.pdf
http://www.marshallsoft.com/csc_4db.pdf

 11

2.5 Development Languages Supported

We have versions of the Client / Server Communications (CSC) component library for C/C++ and .NET

(CSC4C), Borland (Codegear) Delphi (CSC4D), Visual FoxPro (CSC4FP), Xbase++ (CSC4XB), dBASE

(CSC4DB) and Visual Basic and VB.NET (CSC4VB). All versions of CSC use the same DLLs

(CSC32.DLL or CSC64.DLL). Evaluation versions for these may be downloaded from our website at

 http://www.marshallsoft.com/client-server-communication.htm

The Client / Server Communications DLL can also be used with any application written in any language

capable of calling the Windows (95/98/Me, NT/2000/2003/2012/XP/VISTA/Win7/Win8/ x64) API.

2.5.1 Using CSC with Supported Languages.

Once a developer license is purchased for one programming language version of the Client/Server

Communication SDK (CSC), the same developer can use it with all other supported programming

languages. Supported languages are C/C++, Visual Basic, Visual FoxPro, Xbase++, Visual dBASE and

Borland/Codegear/Embarcadero Delphi.

For example, assume that the developer has previously downloaded and installed the registered version of

CSC4C and now wants to also call CSC functions from Visual Basic.

1. Make a backup copy of CSC32.DLL (and CSC64.DLL) found in the Windows directory (\WINDOWS

or \WINNT).

2. Download and install the evaluation version of CSC4VB

(http://www.marshallsoft.com/csc4vb.htm) into a separate directory from CSC4C.

3. Compile and run the Visual Basic CSCVER example program found in the APPS directory created in

step 2 above. It should display the pop-up evaluation screen.

4. Restore CSC32.DLL saved in step 1 above.

5. Paste the key code value found in (the registered version of CSC4C) KEYCODE.H into

KEYCODE.BAS and KEYCODE.VB.

6. Run the Visual Basic CSCVER example program again. It should no longer display the pop-up screen.

A quicker and easier way would be to request multiple programming versions of CSC when a developer

license is purchased. There is no additional charge.

2.5.2 Using CSC with Unsupported Languages

The Client/Server Communications functions can be called from any program written in any computer

language capable of calling 32-bit or 64-bit Windows API functions.

Declaration files are available for the following languages:

[LANGUAGE] [FILE]

C/C++ (& .NET) CSC.H

Visual Basic (& VB.NET) CSC32.BAS, CSC32.VB (VB.Net)

VBA (Excel, Access) CSC32.BAS

PowerBASIC CSC32.PBI

Borland Delphi CSC32.PAS

Fujitsu COBOL CSC32.CBI

Visual FoxPro CSC32.FOX

Visual dBase CSC32.CC

Alaska Xbase++ CSC32.CH

Additional declaration files will be added. Give us a call if a declaration file not listed above is needed.

If you have interfaced CSC to an unusual language, email us the declaration file!

http://www.marshallsoft.com/client-server-communication.htm
http://www.marshallsoft.com/csc4vb.htm

 12

2.6 Converting From CSC Version 3 to Version 4

The following applies ONLY to those running CSC version 3.0 or earlier.

In order to provide the capability of one server program to be able to accept clients on more than one port

concurrently, several changes were necessary to version 3 CSC functions.

Application programs that use the Client/Server Communications (CSC) library Version 3.0 or earlier

will have to be changed as shown below. Notice that most of the changes apply to server applications only.

2.6.1 cscAttach

Server Programs:

 Change cscAttach(CONNECTS + 1, KeyCode)

 To cscAttach(CONNECTS, 1, KeyCode)

Client Programs:

 Change cscAttach(CONNECTS, KeyCode)

 To cscAttach(CONNECTS, 0, KeyCode)

2.6.2 cscServer

Retain the return value (virtual "listen" socket) from cscServer that will be used when calling

cscAwaitConnect, cscAcceptConnect, and cscConnectMessage.

2.6.3 cscAwaitConnect

Server Programs:

 Change cscAwaitConnect(Timeout)

 To cscAwaitConnect(Sock, Timeout)

 (where Sock is the value returned from cscServer)

2.7.4 cscAcceptConnect

Server Programs:

 Change cscAcceptConnect()

 To cscAcceptConnect(Sock)

 (where Sock is the value returned from cscServer)

2.6.5 cscSendMessage

Server Programs:

 Change cscSendMessage(Wnd, -1, MsgID)

 To cscConnectMessage(Wnd, Sock, MsgID)

 (where Sock is the value returned from cscServer)

Client Programs:

 Change cscSendMessage(Wnd, Sock, MsgID)

 To cscDataMessage(Wnd, Sock, MsgID)

 13

2.7 Example Client/Server Protocol

Several of the Client/Server Communications Library demonstration programs use the following

example protocol:

(1) The server must be running first at a specified IP address using a specified port number known to both

client and server. A host name may be used instead of an IP address. The server waits for a connection

attempt by a client.

(2) The client attempts to connect to the server.

(3) The server accepts the connection from the client, and then sends its greeting message, such as:

"CSC Example Server"

(4) The client receives the server's greeting message.

(5) The client sends a request (command) string to the server.

(6) The server receives the client's request.

(7) The server sends back its response string.

(8) Repeat steps (5), (6), and (7) until done.

(9) The client closes its connection to the server.

The server responds with the following response strings when presented with the corresponding requests

(REQ) from the client:

 REQ Response String Request Example Response Example

 WHO Sends name of the server. WHO W_SERVER

 VER Sends server version #. VER 7.1

 BYE OK (then disconnects) BYE OK

 ECH Sends string after "ECHO " ECH Hello Hello

The above protocol is just an example. The programmer can create whatever protocol is required. Request

strings can be any length, although it is best to keep them as short as possible.

Also see PROTOCOLS.TXT

 14

2.8 Stream Data I/O

Like the Windows winsock I/O functions, the CSC data I/O functions

 cscGetData

 cscPutData

 cscCryptoGetData

 cscCryptoPutData

are stream oriented. This means that all incoming data will not necessarily be available at one time. For

example, cscPutData may be called to write 10,000 bytes but cscGetData may have to be called several

times before the entire 10,000 bytes are received.

The data I/O functions return the number of bytes received.

2.9 Packet Data I/O

The CSC packet I/O functions

 cscGetPacket

 cscPutPacket

 cscCryptoGetPacket

 cscCryptoPutPacket

send and receive variable length packets, varying from 1 to 10,000 bytes per packet. Unlike the CSC data

I/O functions, there is a one-to-one correspondence between packets send and packets received. There is

no such thing as a partial packet.

Because there is always one packet received for one packet transmitted, packet I/O is easier to code than

(stream oriented) data I/O.

The packet I/O functions return the number of bytes received.

Note that CSC packets are not the same as TCP packets.

2.10 File Transfer

There are two sets of functions that copy files from one computer to another via a TCP connection:

(1) cscPutFile / cscGetFile and (2) cscPutFileExt / cscGetFileExt, along with their crypto equivalents.

2.10.1 cscPutFile / cscGetFile (Standard File Transfer protocol)

Files are transmitted from the program calling cscPutFile to the program calling cscGetFile.

2.10.2 cscPutFileExt / cscGetFileExt (Extended File Transfer Protocol)

Files are transmitted from the program calling cscPutFileExt to the program calling cscGetFileExt, but

only that part of the specified file that has not already been successfully received. If only part of a file is

transferred (because of a network or computer malfunction), the file transfer will (when restarted at a later

time) continue at the point that it left off. These functions are particularly useful when transferring large

files.

 15

2.11 Encryption

2.11.1 Overview

Encryption is performed by the following CSC functions:

 cscCryptoPutData - Encrypts data as it is transmitted.

 cscCryptoGetData - Decrypts data as it is received.

 cscCryptoPutFile - Encrypts a file as it is transmitted.

 cscCryptoGetFile - Decrypts a file as it is received.
 cscCryptoPutPacket - Encrypts packet as it is transmitted.

 cscCryptoGetPacket - Decrypts packet as it is received.

See the CSC Reference Manual (CSC_REF.PDF) for a description of each function.

In all cases, encryption is performed by XOR'ing the data or file with the contents of the "pad buffer",

named after the cryptographic concept of the "one time pad".

For example, suppose we want to transmit the three characters "ABA". Recalling that the hex code is 41H

for 'A' and 42H for 'B', and using (13H, 5CH, 29H) as the first 3 bytes in the pad buffer, the computation is

thus

 41H XOR 13H = 52H

 42H XOR 5CH = 1EH

 41H XOR 29H = 68H

and the three bytes 52H, 1EH, and 68H are transmitted.

The message is recovered by applying the same pad (13H, 5CH, 29H) to the received message

 52H XOR 13H = 41H

 1EH XOR 5CH = 42H

 68H XOR 29H = 41H

2.11.2 Protocol Issues

The contents of the pad file passed to cscCryptoPutData and cscCryptoGetData must always be the

same. That is, the contents of the pad file cannot be changed between calls to cscCryptoPutData and

cscCryptoGetData unless the receiving side has read all of the data sent by the sending side.

The contents of the pad file passed to cscPutPacket and cscGetPacket can be changed, if desired, after

each packet is sent and received. That is, the content of the pad buffer can be changed if desired, provided

that the same pad buffer is used by both the sending side and the receiving side for each individual packet.

2.11.3 Populating the Pad Buffer

There are several ways to populate the pad buffer. Once easy way is to use a pseudo random number

generator to generate 8-bit (0 to 255) random variates. The "key" is the random number seed. See the

cscFillRandom function.

Also see the following section.

http://www.marshallsoft.com/csc_ref.pdf

 16

2.12 Using the AES (Advanced Encryption Standard) Module

To be the most secure, the CSC encryption pad buffer should be changed after each connection session.

This is because if an adversary can get both the encrypted and decrypted copy of a file then the encryption

pad buffer can be easily determined which can be used to decode all files using the same pad buffer. The

solution is to change the pad buffer after each use.

One practical method for doing this is to create a random pad buffer - also known as the "session key". The

session key is then encrypted with strong encryption such as the "Advanced Encryption Standard" before

transmitting to the other side that recovers the session by decrypting it. In this way the encryption key is

different for each connection session.

Using session keys the CSC logic would be:

CSC CLIENT:

1. Create a random session key.

2. Encrypt the session key.

3. Connect to the server.

4. Transmit the encrypted session key to server.

5. Use the session key as the "CSC encryption pad".

CSC SERVER:

1. Accept connection from CSC client.

2. Receive the encrypted session key from the client.

3. Decrypt the session key.

4. Use the session key as the "CSC encryption pad".

The aesClient and aesServer example programs requires the MarshallSoft AES Encryption module that

can be downloaded from http://www.marshallsoft.com/aes.htm

http://www.marshallsoft.com/aes.htm

 17

2.13 Direct Device Control

Many external devices can be controlled by writing to their assigned IP address. Examples of such devices

include Relay Controllers, Scales, GPS Devices, and embedded computers.

For example, suppose that you want to be able to turn on and off electrical equipment in your home or

office by computer control. An internet search will find quite a few "relay controllers". To control them

by using your computer, they will have one of several methods of control: RS232 serial, USB, and direct

TCP/IP control.

To use RS232 serial or USB control, a serial communications library can be used such as our "Windows

Standard Serial Communications Library". See http://www.marshallsoft.com/serial-communication-

library.htm

To use CSC for direct device control, you must first know the assigned IP address and port number of the

device. If your network uses dynamic assignment of IP addresses (DHCP), the IP address can be found by:

1. Looking in the router's DHCP table.

2. Searching the list of allowed IP addresses assigned by your router by attempting to connect (using

cscClient) to each IP on the chosen port.

Once the IP address and port are known, the logic required to send a command (or commands) to the

external device is as described in section 3.2 "Clients" with the exception that some external devices do not

send greeting messages.

See the CONTROL example program.

http://www.marshallsoft.com/serial-communication-library.htm
http://www.marshallsoft.com/serial-communication-library.htm

 18

3 TCP and UDP Sockets

There are two types of sockets: User datagrams (UDP sockets) and streams (TCP sockets). TCP sockets

implement bi-directional data streams, guaranteed to be error free. UDP sockets are rarely used in network

application programming. TCP is used for most application level net programming, including most of the

example programs.

CSC provides three UDP functions: cscCreateUDP, cscPutUDP, and cscGetUDP. See the uEcho_s (UDP

echo server) and uEcho_c (UDP echo client) example programs.

TCP/IP network programs can be classified into two types: servers and clients.

3.1 Servers

The server program must always be running before a client can attempt to connect to it. The server can be

programmed to accept one or more connections concurrently.

3.1.1 Server Program Logic

The basic program logic for a server is as follows:

 1. cscAttach (attach CSC32.DLL or CSC64.DLL)

 2. cscServer (start server)

 3. cscAwaitConnect (wait for connection attempt from client)

 4. cscAcceptConnect (accept connection from client)

 5. cscPutData (send greeting message to client)

 LOOP

 6. cscGetData (read command request from client)

 7. cscPutData (send response to command request)

 GO TO LOOP until done

 8. cscClose (close connection to client}

 9. cscRelease (release CSC32.DLL or CSC64.DLL)

Note that the above logic accepts just one connection, although servers can be written with CSC that can

handle multiple connections.

The cscSendMessage function can also be used to send a Windows message when a connection is ready to

be accepted by the server, or when data is ready to be read. Obviously, cscSendMessage can be used only

in programs written using a Windows message loop. Refer also to the server example programs.

3.1.2 Example Server Programs

Each CSC product (CSC4C, CSC4VB, CSC4D, and CSC4FP) contains several server and client programs.

See the “SERVER” example program (SERVER.C, SERVER.BAS, or SRV_PRJ.DPR), which accepts

connections from the “CLIENT” example program.

Also refer to Section 4.0 "Challenge and Response Authentication".

 19

3.2 Clients

The server program must always be running before a client can attempt to connect to it.

Although not too common, a single program can be written that acts as both a server and a client. In this

case, a minimum of two channels (see cscAttach, Section 2.2 in the CSC Reference Manual (CSC_REF)

must be allocated for the server part of the program and one channel for the client side.

3.2.1 Client Program Logic:

The basic program logic for a client is as follows:

 1. cscAttach (attach CSC32.DLL)

 2. cscClient (start client)

 3. cscGetData (read greeting message from server)

 LOOP

 4. cscPutData (send command to server)

 5. cscGetData (read response from server)

 GO TO LOOP until done

 6. cscClose (close connection to server}

 7. cscRelease (release CSC32.DLL)

The cscSendMessage function can also be used to send a Windows message when data is ready to be read.

Obviously, cscSendMessage can be used only in programs written using a Windows message loop. Also

see the client example programs.

3.2.2 Example Client Programs

Each CSC product (CSC4C, CSC4VB, CSC4FP and CSC4D) contain several server and client programs.

See the “CLIENT” example program (CLIENT.C, CLIENT.BAS, CLIENT.FOX or CLI_PRJ.DPR),

which connect to the “SERVER” example program.

Also refer to Section 4.0 "Challenge and Response Authentication".

http://www.marshallsoft.com/csc_ref.pdf

 20

4 Challenges and Response Authentication

The challenge / response authentication protocol is designed to prevent unauthorized clients from

connecting to your server. Passwords are often used for this purpose, but can be stolen en route if

transmitted without being encrypted. With the challenge and response protocol the server presents a

question ("challenge") and the client must provide a valid answer ("response") to be authenticated.

The program logic for the challenge / response protocol is as follows:

SERVER

 1. Server accepts connection from client.

 2. Server generates an 8-byte "challenge" string by calling cscChallenge.

 3. Server sends challenge string to client.

 4. Server calculates the correct response by calling cscResponse.

 5. Server waits for a response from the client; then reads the response.

 6. Server drops client if response string is not equal to the computed response string.

CLIENT

 1. Client connects to the server.

 2. Client reads the challenge string from the server.

 3. Client calculates the correct response by calling cscResponse.

 4 Client sends response string to server.

The correct response is computed from the following 3 parameters by cscResponse.

1. Multiplier (any 32-bit number).

2. Mask (any 32-bit number).

3. Rotate count (from 0 to 31).

The same 3 values above must be used by both the client and the server.

The challenge string is the 8 byte hexadecimal representation of a random 32-bit value.

Each time a client attempts to connect to a server, a different challenge string will be computed (except for

once ever 2^32 times). Thus, knowledge of previous challenge / response pairs will not help potential

attackers.

See the AUTH_S and AUTH_C programs for an example of the use of the challenge / response protocol.

 21

5 Resolving Problems

The evaluation version example programs must be run on the same machine as on which SETUP was run.

If you run into problems running the evaluation version with Windows Server, contact us.

Be sure that the proper keycode is passed to cscAttach. Refer to Section 2.1 "Keycode.

Before attempting to write an application using CSC, run several of the example programs. Begin by

running CSCVER which should display a pop-up window (for the evaluation version only) and also

display the CSC version, build number and registration string.

If you cannot get your application to run properly, first compile and run the example programs. If you call

us to report a possible bug in the library, the first thing we will ask is if the example programs run

correctly. All example programs have been compiled and tested.

Test the code returned from all CSC functions. Then, call cscErrorText to get the text associated with the

error code. All functions return an integer code. Negative values are always errors. Error codes returned

by CSC functions can be found in the CSC declaration file and are also listed in Section 9.

For example (C Example):

 Code = cscAttach(2, (long)CSC_KEY_CODE);

 if(Code<0)

 {static char Buffer[64];

 cscErrorText(0,Code,Buffer,64);

 printf("Error %d: %s\n", Code, Buffer);

 }

Another good idea is to turn on logging by calling

 cscSetString (-1, CSC_SET_LOG_FILE, (char *)"SERVER.LOG"); {C/C++}

 cscSetString (-1, CSC_SET_LOG_FILE, "SERVER.LOG") {VB}

If you encounter a problem that you cannot resolve, email us at info [at] marshallsoft.com. To avoid

having your email deleted by our Spam scanners, begin the Subject with HELP CSC. Zip up any

attachments and send plain ASCII text email only.

If you still get the evaluation screen (popup window) after purchasing a developer license, the problem is

that Windows is finding the evaluation DLL before the registered DLL. The solution is to delete (or zip up)

all evaluation versions of the CSC32.DLL or CSC64.DLL and run the SETUP program again.

If you get "error -74" when calling cscAttach, the problem is that the keycode passed to cscAttach does

not match the keycode in the DLL's. This is caused by (1) using the evaluation keycode (value = 0) with

the registered DLL, or (2) using the registered keycode with the evaluation DLL.

Review the CSC Programmer’s and Reference Manuals. We also suggest reading Section 3 "Servers and

Clients".

 22

6 Versions of CSC

The Client / Server Communications (CSC) SDK library is available in three versions. All three

versions have identical functionality.

6.1 Evaluation Version

The evaluation version can be differentiated from the other two versions by:

(1) The evaluation reminder screen is displayed at startup.

(2) The evaluation version may not be used for commercial purposes.

(3). The evaluation version can be tested for 30 days.

6.2 Academic Version

The academic version can be differentiated from the other two versions by:

(1) There is no evaluation reminder screen.

(2) The academic version may not be used for commercial purposes.

DLLs purchased with the academic discount may not be distributed, and must be used for educational

purposes only.

6.3 Professional Version

The professional version can be differentiated from the other two versions by:

(1) There is no evaluation reminder screen.

(2) Source code may be purchased for CSC.

Compiled DLLs may be distributed royalty free with your compiled applications as specified by the

software license. However, neither the License Key nor the source code (if purchased) to the DLLs may

be distributed. The Professional version may be used for commercial purposes.

 23

7 Legal Issues

7.1 License

This license agreement (LICENSE) is a legal agreement between you (either an individual or a single

entity) and MarshallSoft Computing, Inc. for this software product (SOFTWARE). This agreement also

governs any later releases or updates of the SOFTWARE. By installing and using the SOFTWARE, you

agree to be bound by the terms of this LICENSE. If you do not agree to the terms of this LICENSE, do not

install or use the SOFTWARE.

MarshallSoft Computing, Inc. grants a nonexclusive license to use the SOFTWARE to the original

purchaser for the purposes of designing, testing or developing software applications. Copies may be made

for back-up or archival purposes only. This product is licensed for use by only one developer at a time.

All developers working on a project that includes a MarshallSoft Software SDK, even though not working

directly with the MarshallSoft SDK, are required to purchase a license for that MarshallSoft product.

The "academic" registered DLL's may not be distributed under any circumstances, nor may they be used

for any commercial purpose.

The "professional" registered DLL's may be distributed (without royalty) in object form only, as part of the

user's compiled application provided the value of the Key Code (License Key) is not revealed. The

registered DLL's may NOT be distributed as part of any software development system (compiler or

interpreter) without our express written permission. The source code (CSC32.C) for the library is

copyrighted by MarshallSoft Computing and may not be released or modified in whole or in part.

7.2 Warranty

MARSHALLSOFT COMPUTING, INC. DISCLAIMS ALL WARRANTIES RELATING TO THIS

SOFTWARE, WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY

DISCLAIMED. NEITHER MARSHALLSOFT COMPUTING, INC. NOR ANYONE ELSE WHO HAS

BEEN INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THIS SOFTWARE

SHALL BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE SUCH SOFTWARE EVEN IF

MARSHALLSOFT COMPUTING, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES OR CLAIMS. IN NO EVENT SHALL MARSHALLSOFT COMPUTING, INC.'S

LIABILITY FOR ANY SUCH DAMAGES EVER EXCEED THE PRICE PAID FOR THE LICENSE TO

USE THE SOFTWARE, REGARDLESS OF THE FORM OF THE CLAIM. THE PERSON USING THE

SOFTWARE BEARS ALL RISK AS TO THE QUALITY AND PERFORMANCE OF THE

SOFTWARE.

Some states do not allow the exclusion of the limit of liability for consequential or incidental damages, so

the above limitation may not apply to you.

This agreement shall be governed by the laws of the State of Alabama and shall inure to the benefit of

MarshallSoft Computing, Inc. and any successors, administrators, heirs and assigns. Any action or

proceeding brought by either party against the other arising out of or related to this agreement shall be

brought only in a STATE or FEDERAL COURT of competent jurisdiction located in Madison County,

Alabama. The parties hereby consent to in personam jurisdiction of said courts.

 24

8 CSC Function Summaries

Refer to the Client/Server Communication Reference Manual (CSC_REF.PDF) for detailed information

on the CSC functions. There are 55 functions in the Client/Server Communication Library.

 cscAcceptConnect Accept a connection from a client

 cscAttach Attaches CSC323.DLL (or CSC64.DLL)

 cscAwaitConnect Waits for a connection attempt by a client.

 cscAwaitData Waits for incoming data.

 cscByteToShort Converts from 8-bit ASCII to 16-bit Unicode ASCII

 cscChallenge Constructs challenge string.

 cscClient Attempts to connect to server.

 cscClientExt Attempts to connect to server on specific local port.

 cscClose Closes an open connection.

 cscConnectMessage Sends message when connection is ready to accept.

 cscCreateUDP Created UDP socket.

 cscCryptoGetData Reads (receives) encrypted data.

 cscCryptoGetFile Reads (receives) encrypted file.

 cscCryptoGetFileExt Reads (receives) encrypted (extended) file.

 cscCryptoGetPacket Reads (receives) encrypted data packet.

 cscCryptoPutData Writes (transmits) encrypted data.

 cscCryptoPutFile Writes (transmits) encrypted file.

 cscCryptoPutFileExt Writes (transmits) and encrypted (extended) file.

 cscCryptoPutPacket Writes (transmits) encrypted data packet.

 cscDataCRC Computes CRC for data buffer.

 cscDataMessage Sends Windows message when data is ready to read.

 cscErrorText Returns text of error code.

 cscFileCRC Computes the CRC of a file.

 cscFileLength Returns the length of a file.

 cscFillRandom Fills buffer with random bytes.

 cscGetData Reads (receives) data.

 cscGetFile Reads (receives) file.

 cscGetFileExt Reads (receives) file (extended).

 cscGetInteger Gets integer parameter.

 cscGetPacket Reads (received) data packet.

 cscGetString Gets string parameter.

 cscGetUDP Reads UDP datagram.

 cscIsConnected Return TRUE (non-zero) if connected.

 cscLaunch Starts an external executable.

 cscMakeDotted Makes dotted decimal string from IP address.

 cscMakeDotted4 Makes dotted decimal string from 4 address components.

 cscMulticast Enables UDP multicast packets to be received.

 cscNetToHost16 Converts 16-bit integer from network to host byte order.

 cscNetToHost32 Converts 32-bit integer from network to host byte order.

 cscPutData Writes (transmits) data.

 cscPutFile Writes (transmits) file.

 cscPutFileExt Writes (transmits) file (extended).

 cscPutPacket Writes (transmits) data packet.

 cscPutUDP Write UDP datagram.

 cscReadSize Returns # bytes ready to be read.

 cscRelease Releases CSC32.DLL

 cscResolve Resolves a host address into a IP address.

 cscResponse Computes the correct response for a challenge string.

 cscServer Waits for a connection attempt by a client.

 cscSetInteger Sets integer parameter.

 cscSetString Sets string parameter.

 cscShortToByte Converts from 16-bit Unicode ASCII to 8-bit ASCII.

 cscSleep Sleeps specified milliseconds.

 cscSystemTics Returns system tics (milliseconds since boot-up).

 cscTestDotted Test format of dotted IP address.

http://www.marshallsoft.com/csc_ref.pdf

 25

9 CSC Error Return List

-10004: Interrupted system call.

-10009: Bad file number.

-10013: Access denied.

-10014: Bad address.

-10022: Invalid argument.

-10024: Too many open files.

-10035: Would block socket in non-blocking mode.

-10036: Blocking call already in progress.

-10037: Operation already completed.

-10038: Not a valid socket

-10039: Destination address required.

-10040: Message too big for buffer.

-10041: Protocol mismatch.

-10042: Protocol option invalid.

-10043: Protocol not supported.

-10044: Socket type not supported.

-10045: Socket operation not supported.

-10047: Socket address family not supported.

-10048: Socket address already in use.

-10049: Socket address not available.

-10050: Network error.

-10051: Cannot reach network.

-10052: Connection dropped.

-10053: Connection timed-out or aborted.

-10054: Connection reset by remote host.

-10055: Out of buffer space.

-10056: Socket already connected.

-10057: Socket not connected.

-10058: Socket functionality shut down.

-10060: Timed-out attempting to connect.

-10061: Connection refused by remote host.

-10064: Host is down

-10065: No route to host

-10091: Network not yet ready.

-10092: WINSOCK doesn't support requested version.

-10093: Sockets not initialized. Call WSAStartup.

-11001: Host does not exist.

-11002: Host not found. Try again.

-11003: Non-recoverable error has occurred.

-11004: No data is available.

 26

 -1: EOF.

 -2: CSC aborted.

 -3: CSC accept error.

 -4: CSC already attached

 -5: Cannot comply.

 -6: No such socket.

 -7: Connect error.

 -8: Listen error.

 -9: No such host.

 -10: CSC not attached.

 -11: NULL argument.

 -12: NULL pointer.

 -13: Cannot allocate memory

 -14: Buffer size error

 -15: Packet CRC error

 -18: Too many sockets.

 -19: File format protocol error.

 -20: File name only.

 -21: Packet timeout.

 -22: Packet error.

 -23: Transfer cancelled.

 -24: File too large

 -25: No listen socket

 -26: Argument out of range

 -27: Data size too large

 -28: Timed out during connect.

 -29: Maximum packet size exceeded.

 -30: Cannot resolve name.

 -74: Bad key code.

 -75: Bad file offset.

 -1001: No socket address.

 -1002: No free sockets.

 -1003: No such vsock.

 -1004: Bad status flag.

 -1005: Invalid socket.

 -1006: No such parameter.

 -1007: Cannot comply.

 -1008: String size error.

 -1009: No such server.

 -1010: Buffer length error.

 -1011: Connect error.

