
 1

MarshallSoft AES

(Advanced Encryption Standard)

User's Manual

(AES_REF)

Version 6.0

February 14, 2022

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2022

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815 USA

Web: http://www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 Documentation Set Page 4

 1.2 Technical Support Page 5

 1.3 How to Purchase Page 6

 1.4 Updates Page 7

 1.5 Customer ID Page 8

 1.6 License File Page 8

 1.7 Distribution Page 8

 1.8 Keycode Page 8

 1.9 Dynamic Library Page 8

2 AES Application Notes Page 9

 2.1 AES Control Buffer Page 9

 2.2 Validation Page 9

 2.3 Encryption Keys Page 9

 2.4 Key Generation Page 10

 2.5 Session Key Page 10

 2.6 Block Padding Page 11

 2.7 Encryption Modes Page 11

 2.8 Encryption Logic Page 12

 2.9 Decryption Logic Page 12

 2.10 Hash Functions Page 13

 2.11 PKCS7 Padding Page 13

 2.12 Pass Phrase Selection Page 13

 2.13 Pass Phrase Security Page 14

 2.14 Cryptographically Secure RNG Page 14

 2.15 Base64 Encoding Page 14

 2.16 Diffie-Hellman Key Exchange Page 15

3 Encryption Topics Page 16

 3.1 Encryption Keys Embedded in Code Page 16

 3.2 Multi-Factor Encryption Page 16

 3.3 Key Management Page 16

 3.4 Key Distribution to Remote Users Page 16

 3.5 Separation of Encryptor & Communicator Page 16

4 MarshallSoft AES Library Versions Page 17

 4.1 Evaluation Version Page 17

 4.2 Academic Version Page 17

 4.3 Professional Version Page 17

5 Resolving Problems Page 18

6 Legal Issues Page 19

 6.1 License Page 19

 6.2 Warranty Page 19

7 AES Function Summary Page 20

8 AES Error Code List Page 21

 3

1 Introduction

The MarshallSoft Advanced Encryption Standard Library (AES) is a toolkit that allows software

developers to easily implement strong encryption and decryption in a Windows application.

The MarshallSoft Advanced Encryption Standard Library (AES) is a component library of functions

used to perform encryption and decryption using the 256-bit "Advanced Encryption Standard" (AES) as

specified by the U.S. National Institute of Standards and Technology (NIST). See
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

AES is considered "strong encryption" and replaces the previous US encryption standard "Data Encryption

Standard" (DES). AES is commonly used by many financial entities such as banks to protect their

customer's sensitive information.

Our implementation of the Advanced Encryption Standard has been verified by running the "Advanced

Encryption Standard Algorithm Validation Suite" (AESAVS), which can be found at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

The MarshallSoft Advanced Encryption Standard DLL's (AES32.DLL and AES64.DLL) will work

under all 32-bit and 64-bit versions of Windows through Windows 11. Both Win32 and Win64 DLL's are

included.

The User’s Manual applies to the MarshallSoft Advanced Encryption Standard Library (AES)

component library for all supported programming languages. It discusses encryption and decryption

processing as well as language independent programming issues and provides purchasing and licensing

information.

We have versions of the MarshallSoft Advanced Encryption Standard SDK (AES) for C/C++

(AES4C), Delphi (AES4D), Visual Basic (AES4VB), PowerBasic (AES4PB), Visual FoxPro (AES4FP),

Visual dBase (AES4DB) and Alaska Xbase++ (AES4XB). The MarshallSoft AES DLLs (AES32.DLL

and AES64.DLL) can also be used from any language (Power Basic, Visual Basic, ACCESS, EXCEL,

VBA, Delphi, Visual FoxPro, COBOL, Xbase++, Visual dBase, Microsoft Office, etc.) capable of calling

the Windows API.

Purchase a developer license for one programming language and use it with all others. All versions of the

MarshallSoft AES component use the same DLLs (AES32.DLL or AES64.DLL). However, the examples

provided for each version are written and tested for the specified programming development language.

Development time is shortened because programmers need only to learn one interface.

For the latest version of our AES software, see http://www.marshallsoft.com/aes.htm

The best way to get familiar with the MarshallSoft AES library is to try out one of the example programs.

The example programs are described in the AES4x Programmer's Manual. Where the “x” in AES_4x

specifies the host programming language: C for C/C++, VB for Visual Basic, ‘PB’ for Power Basic, ‘D’

for Delphi, ‘FP’ for FoxPro, ‘DB’ for dBase, and ‘X’ for XBase.

Legalities

It is illegal to possess strong encryption software in some countries in the world. Do not download or use

this software if it is illegal to do so in your country.

In addition, this software cannot be sold to countries on the US Embargo List. See
http://www.pmddtc.state.gov/embargoed_countries/index.html

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://www.marshallsoft.com/aes4c.htm
http://www.marshallsoft.com/aes4d.htm
http://www.marshallsoft.com/aes4vb.htm
http://www.marshallsoft.com/aes4pb.htm
http://www.marshallsoft.com/aes4fp.htm
http://www.marshallsoft.com/aes4db.htm
http://www.marshallsoft.com/aes4xb.htm
http://www.marshallsoft.com/aes.htm
http://www.pmddtc.state.gov/embargoed_countries/index.html

 4

1.1 Documentation Set

The complete set of documentation is provided in Adobe PDF format. This is the third manual

(AES_REF.PDF) in the set.

 AES_4x Programmer’s Manual (AES_4x.PDF) where x = C,D,VB,PB,FP,DB,XB

 AES User’s Manual (AES_USR.PDF)

 AES Reference Manual (AES_REF.PDF)

The AES_4x Programmer’s Manual is the programming language specific manual. All language

dependent programming issues including installation, compiling and example programs are discussed in

this manual. The language specific manuals are as follows:

[NAME] [DESCRIPTION]

AES_4C : AES Programmer's Manual for C/C++

AES_4VB : AES Programmer's Manual for Visual Basic

AES_4PB : AES Programmer's Manual for Power Basic

AES_4D : AES Programmer's Manual for Delphi

AES_4FP : AES Programmer's Manual for Visual FoxPro

AES_4DB : AES Programmer's Manual for Visual dBase

AES_4XB : AES Programmer's Manual for XBase++

The AES User’s Manual (AES_USR.PDF) discusses encryption/decryption programming issues.

Technical support, licensing and purchasing information is also provided. Read this manual after reading

the AES Programmer’s Manual.

The AES Reference Manual (AES_REF.PDF) contains details on each individual AES function.

All documentation can also be accessed online at http://www.marshallsoft.com/advanced-

encryption-standard.htm.

http://www.marshallsoft.com/aes_usr.pdf
http://www.marshallsoft.com/aes_ref.pdf
http://www.marshallsoft.com/aes_4c.pdf
http://www.marshallsoft.com/aes_4vb.pdf
http://www.marshallsoft.com/aes_4vb.pdf
http://www.marshallsoft.com/aes_4d.pdf
http://www.marshallsoft.com/aes_4fp.pdf
http://www.marshallsoft.com/aes_4db.pdf
http://www.marshallsoft.com/aes_4xb.pdf
http://www.marshallsoft.com/aes_usr.pdf
http://www.marshallsoft.com/aes_ref.pdf
http://www.marshallsoft.com/advanced-encryption-standard.htm
http://www.marshallsoft.com/advanced-encryption-standard.htm

 5

1.2 Technical Support

We want you to be successful in developing applications using the MarshallSoft Advanced Encryption

Standard Library! We are committed to providing the best, most robust library that we can. If you have

any suggestions or comments, please let us know.

If you are having a problem using AES, see section 5.0 "Resolving Problems". If the problem cannot be

resolved, email us at

 info@marshallsoft.com

with subject "AES HELP"

To avoid having your email deleted by our Spam scanners, begin the subject of your email with "AES4C",

“AES4VB”, “AES4D” or “MSC HELP”. Zip up any attachments and send plain ASCII text email only.

The latest versions of our products are available on our web site at

 http://www.marshallsoft.com

Registered users can update (for a period of one year) to the latest AES DLL at

 http://www.marshallsoft.com/update.htm

http://www.marshallsoft.com/
http://www.marshallsoft.com/update.htm

 6

1. How to Purchase

A developer license for the MarshallSoft Advanced Encryption Standard Library toolkit may be

purchased for $119 (USD) for electronic (email) delivery, or $199 (USD) with ANSII C source code for

the DLLs. This price is good for one year from the release date.

Order with a credit card or through PayPal at

 http://www.marshallsoft.com/order.htm

We accept American Express, VISA, MasterCard, Discover, PayPal, checks in US dollars drawn on a US

bank and International Postal Money Orders (such as Western Union).

The registered package includes:

 AES32 and AES64 (for 64-bit programming) libraries without the “evaluation info” screen.

 Free downloadable updates to the registered DLLs for one (1) year.

 Free technical support by email and telephone for one (1) year.

http://www.marshallsoft.com/order.htm

 7

1.3.1 Academic Discount

We offer an "academic price" of 40% off the normal price for prepaid email orders to faculty and full time

students currently enrolled in any accredited high school, college, or university. The software must be

used for educational purposes. The academic discount does not apply to source code.

To qualify for the discount, your school must have a web site and you must have an email address at your

school that is not forwarded. When ordering, ask for the "academic discount" or enter "student at" (or

"faculty at") and your schools web site address (URL) in the comments field of the order form on our web

site order page. Your order will be sent to your email address at your school.

This offer is not retroactive and cannot be used with any other discount. Products bought with academic

pricing cannot be used for any commercial purpose nor can the AES DLLs be distributed.

1.3.2 Source Code

Source code is available for the purpose of re-compiling AES32.DLL/AES64.DLL. Source code for the

DLL library is standard ANSI C. The source code for AES32.DLL/AES64.DLL is copyrighted by

MarshallSoft Computing and may not be released in whole or in part.

There are two ways to order Source Code for the MarshallSoft Advanced Encryption Standard Library

SDK.

(1) Source Code can be ordered at the same time as the Developer’s License for $195 (for both).

(2) Source Code can be ordered within one year of purchasing a Developer's License for $100. After one

year, a Developer’s License update must be purchased prior to purchasing the source code.

1.4 Updates

When a developer license is purchased for the MarshallSoft Advanced Encryption Standard Library

SDK, the developer will receive the registered DLLs plus a license file (AESxxxx.LIC) that can be used to

update the registered DLLs (does not include source code) for a period of one year from purchase.

Updates can be downloaded from

 http://www.marshallsoft.com/update.htm

After one year, the developer license must be updated to be able to download updates and receive technical

support. The license can be updated for:

 $33 if the update is ordered within one year of the original purchase (or previous update).

 $55 if the update is ordered between one and three years of the original purchase (or previous

update).

 $77 if the update is ordered after three years of the original purchase (or previous update).

A license update includes an additional year of technical support and downloadable updates.

Source code previously purchased may be updated for $40 in addition to the cost of the update ($33, $55

or $77).

Note that the registered AES DLLs do not expire.

Also see the file UPDATES.TXT.

http://www.marshallsoft.com/update.htm

 8

1.5 Customer ID

The customer ID is the number following the product name (AES) in the license file. For example,

Customer 12345 would receive license file AES12345.LIC. Provide the Customer ID along with product

name in the Subject field of an email when contacting us for technical support (AES4C 12345).

1.6 License File

A license file, AESxxxxx.LIC, where “xxxxx” is the 5 digit customer ID is provided with each developer

license. The license file is an encrypted binary file used for updating AES as explained in Section 1.5

“Updates”. The license file is required in order to create (or update) the registered DLLs. The license file

can be found in the /DLLS directory created after SETUP is run.

1.7 Distribution

In order to run an application (that calls MarshallSoft AES functions) on another computer, the file

AES32.DLL or AES64.DLL must be copied to the Windows directory of the other computer. The Windows

directory is normally \WINDOWS for Windows 95/98/ME/2003/2012/XP/Vista/Windows 7/Windows 8 and

\WINNT for Windows NT/2000. Do not attempt to "register" the DLLs.

1.8 Keycode

When a developer license is purchased, the developer will receive a new set of DLLs and a keycode for the

AES DLL's. Pass this keycode as the argument to aesAttach. The keycode will be found in the file

named “KEYCODE”. The keycode for the evaluation version is 0. The keycode for the registered version

will be a unique 9 or 10 digit number. Note: Your keycode is NOT your Customer ID/Registration

number.

1.9 Dynamic Link Library

The MarshallSoft Advanced Encryption Standard Library SDK includes a Win32 [AES32.DLL] and

Win64 [AES64.DLL] dynamic link libraries (DLL). A DLL is characterized by the fact that it need not be

loaded until required by an application program and that only one copy of the DLL is necessary regardless

of the number of application programs that use it. Contrast this to a static library that is bound at link time

to each and every application that uses it.

 9

2 MarshallSoft AES Library Application Notes

2.1 AES Control Buffer

Most MarshallSoft AES functions use the "AES control buffer". This control buffer is for internal use

only and is required for the functions that perform encryption and decryption. The control buffer can reside

in the caller's data space or in the AES data space. Normally it is best to allocate the control buffer in the

AES data space by passing either a NULL pointer or a string whose first character is an asterisk '*' for the

control parameter.

In order to use a control buffer in the caller's space, allocate an array of at least 288 bytes, and use this

array for the control parameter in AES functions. Using a control buffer in the caller's program space

allows concurrent encryption (or decryption).

2.2 Validation

There are several web sites that can do 256-bit AES encryption, such as:

https://www.javainuse.com/aesgenerator

https://ieasynote.com/tools/aes

https://the-x.cn/en-us/cryptography/Aes.aspx

Remember that the password phrase is not the same thing as the encryption key itself. Although any 32

bytes of data can be used as the encryption key, normally the encryption key is constructed from the

password phrase.

Also see file Validation.txt in the DOCS sub-directory.

Validation of our implementation of AES uses the "known answer tests" (KAT) using values published by

the Information Technology Laboratory at the National Institute of Standards and Technology (NIST)

See "The Advanced Encryption Standard Algorithm Validation Suite (AESAVS)

at http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

A KAT test program (kat.c) for our implementation of AES is available for anyone who is interested.

2.3 Encryption Keys

AES is a "symmetric cipher", which means that the same key is used for both encryption and decryption.

Our implementation of AES uses 256-bit (32-byte) encryption keys.

To be effective, the encryption key should not be something that has an obvious pattern that might make it

easy to guess. For example, using an 8 character ASCII text string as the key with the remaining 24 bytes

set to zero does not make for a good encryption key.

Ideally, one would create the encryption key using true random numbers. The significant downside is that

such keys would have to be stored or written down as they would certainly not be easily remembered.

https://www.javainuse.com/aesgenerator
https://ieasynote.com/tools/aes
https://the-x.cn/en-us/cryptography/Aes.aspx
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

 10

2.4 Key Generation

Encryption keys can be created in several ways. Technically, any buffer of 32 bytes (256-bits) will work.

However, it is normally easier to create the encryption key from an ASCII text string using a "password

generator" function such as aesMakeUserKey that can use up to 42 ASCII text characters to create the 32-

byte encryption key.

The pass phrase is used to generate the 32 byte encryption key. Choose a strong pass phrase. This is most

easily done by choosing a pass phrase rather than just a single password. For example, it one were to

choose a 4 character password, say "Mike", a brute force attack on the password is rather easy. Instead,

choose multiple words such as "Doc Holliday was born in Georgia". Alternatively, “salt” the password as

described in section 2.13 “Pass Phrase Security”.

There are three algorithms for generating the encryption/decryption key: (1) The "nibble" method (2) the

"Sha256" method, and the shared method.

The nibble method creates the key by generating three 8-bit bytes from four 6-bit characters.

 aesMakeUserKey(PasswordPhrase, KeyBuffer, AES_NIBBLE_METHOD)

The "Sha256" method uses the 256-bit (32-byte) SHA cryptographic hash algorithm.

 aesMakeUserKey(PasswordPhrase, KeyBuffer, AES_SHA256_METHOD)

The mixed method consists of first applying the nibble method then the SHA 256 method.

 aesMakeUserKey(PasswordPhrase, KeyBuffer, AES_MIXED_METHOD)

2.5 Session Key

Suppose that one wants to transmit several files across the internet. One possibility would be to encrypt

each file using the same encryption key. The biggest disadvantages of this approach is that (1) an

adversary could have all the files (that is, a lot of material) for his crypto-analysis attack, and (2)

encrypting a file is significantly slower than performing XOR operations on a file.

Another possibility would be to encrypt each file using a different encryption key. The biggest

disadvantage to this approach is that many encryption keys must be kept.

However, common practice is to create a "session key" of random values for each file. The session key is

then encrypted using a single encryption key. The encrypted session key is then transmitted followed by

the file in which each block of 16-bytes (from the file) is XOR'ed with the original (un-encrypted) 16-byte

session key.

At the receiving end, the encrypted session key is decrypted so that the file can be recovered by XOR'ing

each block of 16 bytes with the session key.

Transmit Side

1. Create random 16-byte session key (SK).

2. Encrypt session key giving encrypted session key (ESK).

3. Transmit ESK

4. For each 16-byte block (FBi) in the file, transmit (FBi XOR SK)

Receive Side

1. Receive encrypted session key ESK.

2. Decrypt giving the original session key SK.

3. For each 16-byte block (FBi XOR SK) received, decrypt Fbi = (Fbi XOR SK) XOR SK.

 11

2.6 Block Padding

The AES block cipher works on units of 16-bytes, known as a "block". A message to be encrypted is first

broken into 16-byte blocks. Before encryption with aesEncryptBlocks, the final block must be padded if

it is less than 16 bytes.

Blocks can be padded with zero’s, spaces, random bytes or using the PKCS7 padding algorithm (in which

the pad byte is the number of pad bytes added).

The aesPadBuffer function can be used to append padding as necessary. The 2
nd

 argument of the

aesAttach() function specifies if zero padding or PKCS7 padding is done when calling aesEncryptFile,

aesDecryptFile, aesEncryptWrite, or aesReadDecrypt functions.

2.7 Encryption Modes

AES supports two modes of operation: ECB and CBC

2.7.1 ECB - Electronic Code Book (ECB) Mode

The simplest of the encryption modes is the electronic codebook (ECB) mode. The message is divided into

16-byte blocks and each block is encrypted separately.

2.7.2 CBC - Cipher Block Chaining (CBC) Mode

In CBC mode, each block of plaintext is XOR'ed with the previous ciphertext block before being

encrypted. In this way, each ciphertext block depends on all plaintext blocks processed up to that point. To

make each message unique, an initialization vector must be used in the first block.

 C[i] = EK(P[i] ^ C[i-1]), C[0] = IV // Encryption (first block = 1)

 P[i] = DK(C[i] ^ C[i-1]), C[0] = IV // Decryption

Initialization Vector

An initialization vector (IV) is a 16-byte block of data that is used in the CBC mode to randomize

encryption and therefore produce distinct ciphertexts even if the same plaintext is encrypted multiple

times.

The initialization vector usually does not need to be secret. However, it is important that an initialization

vector not be reused using the same key. Reusing an initialization vector leaks some information about the

first block of plaintext. Furthermore, the initialization vector must be unpredictable at encryption time.

 12

2.8 Encryption Logic

The logic for encrypting data or files is as follows:

1. Call aesAttach.

2. Create the 32-byte encryption key or use aesMakeUserKey to make it.

3. Initialize AES for encryption using aesInitAES.

4. Encrypt your buffer with aesEncryptBlocks or aesEncryptBuffer,

 or encrypt your file with aesEncryptFile.

See the TestAES example program.

2.9 Decryption Logic

The logic for decrypting data or files is as follows:

1. Call aesAttach.

2. Create the 32-byte decryption key or use aesMakeUserKey to make it.

3. Initialize AES for decryption using aesInitAES.

4. Decrypt your buffer with aesDecryptBlocks or aesDecryptBuffer,

 or decrypt your file with aesDecryptFile.

See the TestAES example program.

 13

2.10 Hash Functions

A cryptographic hash function is a mathematical algorithm that maps data to a string of fixed size. Hash

functions are one-way functions in that it is infeasible to invert the hashed data.

Refer to functions aesSha256, aesSha256Data, and aesSha256File in the AES Reference Manual

aes_ref.pdf, which maps buffers of bytes to 256 bit (32-byte) strings.

2.10.1 Message Integrity

Hash functions can be used to verify the integrity of a message. For example, if you email a message along

with the hash of the message, the recipient can compute the hash of the received message then compare it

to the hash sent along with the message. If the message has been changed, the two hashes will not match.

2.10.2 User Authentication

Hash functions can be used to authenticate a user’s password (or pass phrase) if the hash of each legitimate

user has been previously stored. The hash of the user’s presented password is computed then compared to

the previously stored hash value. If they match, the user is authenticated. Thus a user can be authenticated

without having to store his password.

2.11 PKCS7 Padding

AES encrypts data in blocks of 16-bytes. If the buffer to be encrypted is a multiple of 16, then a new 16-

byte block is appended containing 10H (16 decimal) repeated 16 times.

If the buffer to be encrypted is not a multiple of 16, then N additional bytes are appended to the last block

(which is 16 - N encrypted bytes) where each appended byte is the value of N

The padding will thus be one of:

 01 (1 pad byte)

 02 02 (2 pad bytes)

 03 03 03 (3 pad bytes)

 ...

 10 10 10 ... 10 (16 pad bytes)

Padding is done before encrypting. The last decrypted 16-byte block is always padded, and the last byte

in the last block is always the number of padding characters in the last block.

The use of PKCS7 padding is recommended.

2.12 Pass Phrase Selection

It is very important to choose a strong pass phrase rather than just a single password. For example, if one

were to choose a 4 character password such as "Mike", a brute force attack on the password (trying all 4

character passwords) is rather easy. Instead, choose multiple words such as "Doc Holliday was born in

Georgia". Further, pass phrases are often easier to remember than more cryptic passwords.

Another alternative is to extend the length of the user’s short password by “salting” it with randomly

generated characters. Refer to function aesSaltPass.

 14

2.13 Pass Phrase Security

To date, 256-bit AES is considered unbreakable. However, pass phrase security is always the weak point in

any encryption implementation.

Embedding a password or pass phrase in your code or writing it to disk is a security risk if an adversary

dumps your executable or disk file. The optimal solution is to first “salt” the password or pass phrase

(using aesSaltPass) then compute (using aesSha256Data) and embed the hash digest of the salted

password or pass phrase in your code, or read the hash digest from a disk file. Note that the hash digest

can even be public.

See section 2.10 “Hash Functions” above and look through the HashDigest example program.

2.14 Cryptographically Secure RNG

A cryptographically secure pseudo-random number generator (CSPRNG) is one in which, given a

sequence of numbers, it is computationally infeasible to predict the next number in the sequence.

The aesSecureRandom function employs the ISAAC algorithm as based on the public domain code

released by Bob Jenkins in March 1996.

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

http://burtleburtle.net/bob/rand/isaac.html

Also refer to the AES Reference Manual (http://www.marshallsoft.com/aes_ref.pdf) for

details on the aesSeureRandom function.

2.15 Base64 Encoding

Base64 is an encoding method that replaces groups of 3 binary bytes with 4 ASCII text bytes. Base64

encoding is a convenient way to express a 32 byte binary encryption key.

Some AES online encryption sites will allow the AES encryption/decryption key to be entered as a Base64

text string.

See aesEncodeBase64 and aesDecodeBase64

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://burtleburtle.net/bob/rand/isaac.html

 15

2.16 Diffie-Hellman KeyExchange

The Diffie-Hellman algorithm allows two users to exchange data (such as an AES encryption key) securely

over a public medium such as the Internet.

For example, consider Pam and Joe who communicate over the internet.

1. Pam wants to send an AES encryption/decryption key over the internet to Joe.

2. Pam creates a private/public key pair on her computer.

3. Joe also creates private/public key pair on his computer.

4. Pam sends Joe her public key and Joe sends Pam his public key.

5. Pam computes her shared key from her private key and Joe's public key.

6. Joe also computes his shared key from his private key and Pam's public key.

7. Pam's shared key will be identical to Joe's shared key.

The public/private key pair is created by aesMakeKeyPair and the shared key is created by

aesMakeSharedKey. The “best practice” is to use the shared AES key just once to exchange the AES

pass phrase or encryption key that will be used on a regular basis.

Note that the functions aesMakeKeyPair and aesMakeSharedKey are very slow as they perform 1024 bit

arithmetic.

See the TestDH example program.

 16

3.0 Encryption Topics

3.1 Encryption Keys Embedded in Code

There are significant advantages to embedding encryption keys into executable code, such as:

(1) A binary encryption key can be used instead of a pass phrase since the key doesn't have to be

remembered by the user.

(2) Since the encryption key is not physically entered, it can never be seen by someone looking over one's

shoulder or compromised with a screenshot.

(3) Users who encrypt messages don't need to know the actual encryption key. An encryption key should

be entered into one's code as binary data (not text), and modified in a predetermined way at runtime in

several different places in the code before actually being used. Thus, an adversary would have to have a

copy of your program and then be able to de-compile it in order to figure out the sequence of steps leading

to the encryption key.

3.2 Multi-Factor Encryption

The idea of multi-factor encryption is that encryption is performed more than once using different

encryption keys. For example, one encryption key could be embedded in your code and another could be

entered as a pass phrase. To encrypt a message, the message is encrypted with the first key then the

(encrypted) result is encrypted a second time with the second key. An adversary would need both

encryption keys in order to decrypt the message.

3.3 Key Management

From time to time, encryption keys will need to be changed. In general, it is best that the "key

administrator" change the keys without revealing the new key (or keys) to others who would be doing the

actual encryption. Conversely, in a large enough business, the key administrator shouldn't have access to

the data being encrypted.

3.4 Key Distribution to Remote Users

If an encryption key set must be provided to remote users, there are several different approaches that are

reasonable unless there are a large number of remote users.

Assume two or more encryption keys that make up a multi-factor encryption key set that must be

distributed to remote users. For example, some ways to distribute an encryption key are:

(1) BEST: Use public key Diffie-Hellman encryption (see section 2.16 above).

(2) Email via Gmail since Gmail encrypts email and is not often hacked.

(3) Mailed via US postal or FedEx.

(4) Sent as a text message.

(5) Make a voice call.

Obviously, unless using Diffie-Hellman, one would want to use two or three factor encryption using a

different method of distribution for each encryption key in the multi-factor encryption key set.

3.5 Separation of Encryptor & Communicator.

A fundamental principle of encryption security is that the software that does the encryption & decryption

should be independent of the software that delivers the encrypted message. Thus, the software that delivers

the message, such as Gmail or Yahoo, would not know how to decrypt your encrypted message. The fact

that both GMail & Yahoo also encrypt your message provides an additional level of security, although

both Gmail & Yahoo have been hacked. Google "has Gmail ever been hacked ?".

 17

4 MarshallSoft AES Library Versions

The MarshallSoft AES Library is available in three versions. All three versions have identical

functionality.

4.1 Evaluation Version

The evaluation version can be differentiated from the other two versions by:

(1) The registration reminder screen is displayed at startup and every 7 minutes thereafter.

(2) The evaluation version may not be used for commercial purposes.

(3) The evaluation version stops working after 30 days.

3.2 Academic Version

The academic version can be differentiated from the other two versions by:

(1) There is no registration reminder screen.

(2) DLL's purchased with the academic discount may not be distributed, and must be used for educational

purposes only.

4.3 Professional Version

The professional version can be differentiated from the other two versions by:

(1) There is no registration reminder screen.

(2) Your compiled DLL may be distributed with your compiled applications as specified by the software

license. However, the Keycode to the DLLs cannot be distributed. The Professional version may be used

for commercial purposes. Licensing information is provided in Section 5.1

 18

5 Resolving Problems

(1) First, be sure you are passing the proper key code. See Section 1.9, “Keycode”.

(2) If the registration reminder screen (popup) is still being displayed after purchasing a license, the

problem is that Windows is finding the evaluation version of the AES DLL before the registered DLL.

The solution is to delete (or zip up) all evaluation versions of AES32.DLL or AES64.DLL. Run SETUP

and then recompile.

(3) If "error -202" is received when calling aesAttach, the problem is that the keycode passed to

aesAttach does not match the keycode in the DLL. This is caused by (1) using the evaluation keycode

(value = 0) with the registered DLL, or (2) using the registered keycode with the evaluation DLL.

(4) If you cannot get your application to run properly, first compile and run the example programs. If you

call us to report a possible bug in the library, the first thing we will ask is if the example programs run

correctly.

(5) Run the TestAES program. If it fails to run as expected, zip up the Marshall AES log files and send

them to
info@marshallsoft.com

with subject
AES HELP xxxxx

where xxxxx is your (6+ digits) customer ID.

(6) Be sure to test the code returned from MarshallSoft AES functions. Then call aesErrorText to get

the text associated with the error code. (The file, ERRORS.TXT, contains a list of all error codes.)

 19

6 Legal Issues

6.1 License

This license agreement (LICENSE) is a legal agreement between you (either an individual or a single

entity) and MarshallSoft Computing, Inc. for this software product (SOFTWARE). This agreement also

governs any later releases or updates of the SOFTWARE. By installing and using the SOFTWARE, you

agree to be bound by the terms of this LICENSE. If you do not agree to the terms of this LICENSE, do not

install or use the SOFTWARE

MarshallSoft Computing, Inc. grants a nonexclusive license to use the SOFTWARE to the original

purchaser for the purposes of designing, testing or developing software applications. Copies may be made

for back-up or archival purposes only. This product is licensed for use by only one developer at a time.

All developers working on a project that includes a MarshallSoft Software SDK, even though not working

directly with the MarshallSoft SDK, are required to purchase a license for that MarshallSoft product.

The "academic" registered DLL's may not be distributed under any circumstances, nor may they be used

for any commercial purpose.

The "professional" registered DLL's may be distributed (royalty free) in object form only, as part of the

user's compiled application provided the value of the Keycode is not revealed. The registered DLL's may

NOT be distributed as part of any software development system (compiler or interpreter) without our

express written permission.

Note that registered DLL’s do not expire. Registered users may download free updates for a period of one

year from the date of purchase.

6.2 Warranty

MARSHALLSOFT COMPUTING, INC. DISCLAIMS ALL WARRANTIES RELATING TO THIS

SOFTWARE, WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY

DISCLAIMED. NEITHER MARSHALLSOFT COMPUTING, INC. NOR ANYONE ELSE WHO HAS

BEEN INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THIS SOFTWARE

SHALL BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE SUCH SOFTWARE EVEN IF

MARSHALLSOFT COMPUTING, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES OR CLAIMS. IN NO EVENT SHALL MARSHALLSOFT COMPUTING, INC.'S

LIABILITY FOR ANY SUCH DAMAGES EVER EXCEED THE PRICE PAID FOR THE LICENSE TO

USE THE SOFTWARE, REGARDLESS OF THE FORM OF THE CLAIM. THE PERSON USING THE

SOFTWARE BEARS ALL RISK AS TO THE QUALITY AND PERFORMANCE OF THE

SOFTWARE.

Some states do not allow the exclusion of the limit of liability for consequential or incidental damages, so

the above limitation may not apply to you.

This agreement shall be governed by the laws of the State of Alabama and shall inure to the benefit of

MarshallSoft Computing, Inc. and any successors, administrators, heirs and assigns. Any action or

proceeding brought by either party against the other arising out of or related to this agreement shall be

brought only in a STATE or FEDERAL COURT of competent jurisdiction located in Madison County,

Alabama. The parties hereby consent to in personam jurisdiction of said courts.

 20

7 MarshallSoft AES Function Summary

Refer to the AES Reference Manual (AES_REF.PDF) for detailed information on the AES functions. A

one-line summary of each function follows.

There are 32 functions in the MarshallSoft AES library.

aesAttach Initialize MarshallSoft AES library.

aesByteToHex Convert bytes to hex characters.

aesDecodeBase64 Decode a base64 encoded data buffer.

aesDecryptBlocks Decrypt data blocks.

aesDecryptBuffer Decrypt data buffer.

aesDecryptFile Decrypt file.

aesEncodeBase64 Base64 encode a data buffer.

aesEncryptBlocks Encrypt data blocks.

aesEncryptBuffer Encrypt data buffer.

aesEncryptFile Encrypt file.

aesEncryptWrite Encrypt buffer & write to file.

aesErrorText Get error text.

aesGetInteger Get Integer parameter for AES processing.

aesGetString Get AES string parameter.

aesHexToByte Convert hex characters to bytes.

aesInitAES Initialize AES for encryption/decryption.

aesMakeKeyPair Make public/private key pair.

aesMakeRandom Generate random bytes.

aesMakeSharedKey Make shared key

aesMakeUserKey Make encryption key.

aesPadBuffer Append pad bytes to buffer.

aesReadDecrypt Read file & decrypt to buffer.

aesRemovePad Remove PKCS7 padding.

aesSaltPass Add random characters ("salt") password or pass phrase.

aesSecureRandom Generate secure random numbers.

aesSetInteger Set AES parameter.

aesSha256Data Compute 32-byte SHA-256 hash (from buffer).

aesSha256File Compute 32-byte SHA-256 hash (from file).

aesShredFile Shred (overwrite with zeros then delete) file.

aesSleep Sleep specified number of milliseconds.

aesVerifyControl Verify integrity of encryption/decryption control buffer.

aesXorBits Convert bytes to hex characters.

http://www.marshallsoft.com/aes_ref.pdf

 21

7 AES Error Code List

Negative return codes are errors, as follows:

AES_NOT_MULTIPLE -2 : block not multiple of 16 bytes

AES_BAD_KEY_DIR -3 : key direction is invalid

AES_BAD_KEY_DATA -4 : key data is invalid

AES_BAD_CIPHER_MODE -5 : invalid cipher mode

AES_BAD_CIPHER_STATE -6 : cipher not initialized

AES_BAD_BLOCK_LENGTH -7 : invalid block length

AES_NOT_INITIALIZED -8 : AES control block not initialized

AES_IS_CORRUPTED -9 : AES control block is corrupted

AES_INTERNAL_ERROR -10 : AES internal error

AES_BAD_PASS_LEN -11 : password is too short

AES_CANNOT_OPEN -12 : cannot open file (for read)

AES_CANNOT_CREATE -13 : cannot create file

AES_READ_ERROR -14 : read error

AES_WRITE_ERROR -15 : write error

AES_BAD_PAD_CHOICE -16 : not AES_PAD_ZERO, AES_PAD_RANDOM, AES_PAD_SPACE

AES_BAD_HEX_CHAR -17 : bad hex character

AES_UNEXPECTED_CHAR -18 : unexpected pass phrase character

AES_ATTACH_CALL -19 : aesAttach not called

AES_NULL_POINTER -20 : unexpected null pointer

AES_BAD_METHOD -21 : not AES_NIBBLE_METHOD, AES_SHA256_METHOD, AES_MIXED_METHOD

AES_BUFFER_TOO_SMALL -22 : buffer is too small

AES_BUFFER_TOO_BIG -23 : buffer is too big

AES_PKCS7_ERROR -24 : PKCS7 padding error

AES_CANNOT_OPEN_WRITE -25 : Cannot open file (for write)

AES_CANNOT_CLOSE -26 : Cannot close file

AES_CANNOT_DELETE -27 : Cannot delete file

AES_ABORTED -201 : AES aborted by user

AES_KEYCODE -202 : Invalid key code

AES_EXPIRED -203 : Evaluation version has expired

