
 1

MarshallSoft AES

(Advanced Encryption Standard)

Reference Manual

(AES_REF)

Version 6.0

February 14, 2022

This software is provided as-is.

There are no warranties, expressed or implied.

Copyright (C) 2022

All rights reserved

MarshallSoft Computing, Inc.

Post Office Box 4543

Huntsville AL 35815 USA

Web: http://www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

http://www.marshallsoft.com/

 2

TABLE OF CONTENTS

1 Introduction Page 3

 1.1 General Remarks Page 3

 1.2 Documentation Set Page 4

 1.3 Declaration Files Page 4

 1.4 Language Notes Page 5

 1.5 AES Control Buffer Page 5

2 MarshallSoft AES Functions Page 6

 2.1 aesAttach Page 6

 2.2 aesByteToHex Page 7

 2.3 aesDecodeBase64 Page 8

 2.4 aesDecryptBlocks Page 9

 2.5 aesDecryptBuffer Page 10

 2.6 aesDecryptFile Page 11

 2.7 aesEncodeBase64 Page 12

 2.8 aesEncryptBlocks Page 13

 2.9 aesEncrypeBuffer Page 14

 2.10 aesEncryptFile Page 15

 2.11 aesEncryptWrite Page 16

 2.12 aesErrorText Page 17

 2.13 aesGetInteger Page 18

 2.14 aesGetString Page 19

 2.15 aesHexToByte Page 20

 2.16 aesInitAES Page 21

 2.17 aesMakeKeyPair Page 22

 2.18 aesMakeRandom Page 22

 2.19 aesMakeSharedKey Page 24

 2.20 aesMakeUserKey Page 25

 2.21 aesPadBuffer Page 26

 2.22 aesReadDecrypt Page 27

 2.23 aesRemovePad Page 28

 2.24 aesSaltPass Page 29

 2.25 aesSecureRandom Page 30

 2.26 aesSetInteger Page 31

 2.27 aesSha256Data Page 32

 2.28 aesSha256File Page 33

 2.29 aesShredFile Page 34

 2.30 aesSleep Page 36

 2.31 aesVerifyControl Page 36

 2.32 aesXorBits Page 37

3 AES Error Code List Page 38

 3

1 Introduction

The MarshallSoft Advanced Encryption Standard Library (AES) is a toolkit that allows software

developers to easily implement strong encryption and decryption into a Windows application.

The MarshallSoft Advanced Encryption Standard Library is a component library of functions used to

perform encryption and decryption using the 256-bit "Advanced Encryption Standard" (AES) as specified

by the U.S. National Institute of Standards and Technology (NIST). See
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

AES is considered "strong encryption" and replaces the previous U.S. encryption standard "Data

Encryption Standard" (DES). AES is commonly used by many financial entities such as banks to protect

their customer’s sensitive information.

Our implementation of the Advanced Encryption Standard has been verified by running the "Advanced

Encryption Standard Algorithm Validation Suite" (AESAVS), which can be found at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

The MarshallSoft Advanced Encryption Standard DLL’s (AES32.DLL and AES64.DLL) will work

under all 32-bit and 64-bit versions of Windows through Windows 10. Both Win32 and Win64 DLL’s are

included.

This MarshallSoft Advanced Encryption Standard Reference Manual (AES_REF) contains details on

each individual AES function.

For the latest version of our AES software, see http:/www.marshallsoft.com/aes.htm

Legalities

It is illegal to possess strong encryption software in some countries in the world. Do not download or use

this software if it is illegal to do so in your country.

In addition, this software cannot be sold to countries on the U.S. Embargo List. See
http://www.pmddtc.state.gov/embargoed_countries/index.html

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://www.marshallsoft.com/aes4c.htm
http://www.pmddtc.state.gov/embargoed_countries/index.html

 4

1.2 Documentation Set

The complete set of documentation is provided in Adobe PDF format. This is the third manual

(AES_REF.PDF) in the set.

 AES_4x Programmer’s Manual (AES_4x.PDF)

 AES User’s Manual (AES_USR.PDF)

 AES Reference Manual (AES_REF.PDF)

The AES_4x Programmer’s Manual is the programming language specific manual. All language

dependent programming issues including installation, compiling and example programs are discussed in

this manual. The language specific manuals are as follows:

[NAME] [DESCRIPTION]

AES_4C : AES Programmer’s Manual for C/C++

AES_4VB : AES Programmer’s Manual for Visual Basic

AES_4D : AES Programmer’s Manual for Delphi

AES_4FP : AES Programmer’s Manual for Visual FoxPro

AES_4DB : AES Programmer’s Manual for Visual dBase

AES_4XB : AES Programmer’s Manual for XBase++

The MarshallSoft AES User’s Manual (AES_USR.PDF) discusses encryption/decryption programming

issues. Purchasing and license information is also provided. Read this manual after reading the AES

Programmer’s Manual.

The AES Reference Manual (AES_REF.PDF) contains details on each individual AES function.

All documentation can also be accessed online at http://www.marshallsoft.com/advanced-
encryption-standard.htm

1.3 Declaration Files

The exact syntax for calling MarshallSoft AES functions is specific to the host language (C/C++, Delphi,

VB, etc.) and is defined for each language in the “AES declaration files”. Each MarshallSoft Advanced

Encryption Standards Library product released will come with the appropriate declaration file for the

supported language. For example,

AES4C C/C++, C++ .NET AES.H

AES4VB Visual Basic AES32.BAS

 Visual Studio VB AES32.VB

 VBA (EXCEL, ACCESS, etc.) AES32.BAS

AES4D Borland/Embarcadero Delphi AES32.PAS

AES4FP Visual FoxPro AES32.FOX

AES4XB Xbase++ AES32.CC

AES4DB Visual dBase AES32.CH

We can provide declaration files (and some example programs) for PowerBASIC and Fujitsu COBOL.

http://www.marshallsoft.com/aes_4c.pdf
http://www.marshallsoft.com/aes_4vb.pdf
http://www.marshallsoft.com/aes_4d.pdf
http://www.marshallsoft.com/aes_4fp.pdf
http://www.marshallsoft.com/aes_4db.pdf
http://www.marshallsoft.com/aes_4xb.pdf
http://www.marshallsoft.com/aes_usr.pdf
http://www.marshallsoft.com/aes_ref.pdf
http://www.marshallsoft.com/advanced-encryption-standard.htm
http://www.marshallsoft.com/advanced-encryption-standard.htm

 5

1.4 Language Notes

All language versions of MarshallSoft AES include the example program AESVER. Refer to this

program and the declaration file as defined in Section 1.3 above to see how AES functions are called. The

AESVER program is also the first program that should be compiled and run.

The best way to see how a function is called is to find it used in one of the example programs. All

MarshallSoft AES functions are used in one or more examples.

See “Using AES with Supported Languages” in the AES User’s Manual (AES_USR.PDF)

1.4.1 C/C++/C#

Project files and/or makefiles supplied for the example programs. MarshallSoft AES supports all versions

of Microsoft Visual C/C++, Visual C++ .NET and Visual C#, and 32-bit Borland C/C++, Borland C++

Builder, Watcom C/C++, Win32-LCC , Digital Mars, and MinGW C++.

1.4.2 Delphi

Functions defined in the Delphi Unit AESW.PAS begin with "f" rather than "aes".

All versions of 32-bit and 64-bit Delphi through Delphi XE10 are supported.

1.4.3 Visual Basic (and VB.NET)

All versions Visual Basic are supported through VB.NET.

1.4.4 Visual FoxPro

All strings passed to MarshallSoft AES functions must be prefixed with the ‘@’ character. All versions of

32-bit Visual FoxPro are supported.

1.4.5 Visual dBase

MarshallSoft AES works with all versions of Visual dBase.

1.4.6 Xbase++

Functions defined for Xbase++ begin with ‘X’. All strings passed to MarshallSoft AES functions must be

prefixed with the ‘@’ character.

1.5 AES Control Buffer

Most functions use the "AES control buffer" that contains the parameters necessary to perform encryption

and decryption. The control buffer can reside in the caller’s data space or in the AES data space. Normally

it is best to allocate the control buffer in the AES data space by passing either a NULL pointer or a string

whose first character is an asterisk ‘*’ for the control parameter.

In order to use a control buffer in the caller’s space, allocate an array of at least 288 bytes, then use this

array for the control parameter in AES functions. Using a control buffer in the caller’s program space

allows concurrent encryption (or decryption).

http://www.marshallsoft.com/aes_usr.pdf

 6

2 MarshallSoft AES Functions

There are 32 AES functions.

2.1 aesAttach :: Initializes the AES DLL (aes32.dll or aes64.dll).

SYNTAX

aesAttach(KeyCode, Flags)

 KeyCode : (I) Key code (pass 0 for evaluation version).

 Flags : (I) AES_PKCS7_MASK : use PKCS7 padding, or

 0 : use “standard” padding (zeros).

REMARKS

The aesAttach function must be the first AES function called and is used to pass the KeyCode (assigned

when the library is purchased) to aes32.dll (or aes64.dll).

EXAMPLE (C/C++)

// the KeyCode for the evaluation version is 0.

int KeyCode = 0;

Code = aesAttach(KeyCode, AES_PKCS7_MASK);

EXAMPLE (VB)

' the KeyCode for the evaluation version is 0.

Dim KeyCode As Integer

KeyCode = 0

Code = aesAttach(KeyCode, AES_PKCS7_MASK)

RETURNS

< 0 : Error. See error list.

>= 0 : # days remaining (evaluation version) or 999 (purchased version).

 7

2.2 aesByteToHex :: Convert Bytes to Hex Characters

SYNTAX

aesByteToHex(Buffer, BufLen, HexBuf)

 Buffer : (P) Buffer of bytes to be converted.

 BufLen : (I) Number of bytes in above buffer.

 HexBuf : (P) Buffer for hex character equivalent.

REMARKS

The function aesByteToHex converts binary data in ‘Buffer’ into hexadecimal characters in ‘HexBuf’.

The size of ‘HexBuf’ should be twice the size of ‘Buffer’ plus 1. For example, if ‘Buffer’ is dimensioned

as 16 bytes, ‘HexBuf’ should be dimensioned as 33 bytes.

This function is supplied as a convenience because some computer languages cannot easily perform this

conversion.

EXAMPLE (C/C++)

char KeyBuffer[32];

char HexBuffer[65]; // note size is 2*32 + 1

Code = aesByteToHex((char *)KeyBuffer, AES_KEY_SIZE, HexBuffer);

HexBuffer[64] = '\0';

EXAMPLE (VB)

Dim ChrBuffer As String

Dim HexBuffer As String

ChrBuffer = Chr(1) + Chr(2) + Chr(3)

HexBuffer = SPACE(7) ' note size is 2*3 + 1

Code = aesByteToHex(ChrBuffer, 3, HexBuffer)

RETURNS

Returns ‘BufLen’

 8

2.3 aesDecodeBase64 :: Decode Base64

SYNTAX

aesDecodeBase64(CodeBuf, CodeLen, DataBuf)

 CodeBuf : (P) Base64 encoded data

 CodeLen : (I) Size of CodedBuf

 DataBuf : (P) Data decoded from CodedBuf

REMARKS

The function aesDecodeBase64 decodes Base64 encoded data. The DataBuf buffer must be at least 3 *

(CodeLen /4) bytes in size. Thus, for example, a 32 byte binary key requires a 44 byte text data buffer.

Base64 encoding replaces groups of 3 binary bytes with 4 ASCII text bytes. Base64 encoding is a convenient

way to express a 32 byte binary encryption key.

Also see function aesEncodeBase64

EXAMPLE (C/C++)

char CodeBuf[44] = ...previously base64 encoded data...

char DataBuf[32];

Code = aesDecodeBase64((char *)CodeBuf, 44, (char *)DataBuf);

EXAMPLE (VB)

Dim CodeBuf As String

Dim DataBuf As String

CodeBuf = ...previously encrypted data...

DataBuf = SPACE(32)

Code = aesDecodeBase64(CodeBuf, 44, DataBuf)

RETURNS

< 0 : Error. See error list.

> 0 : DataLen

 9

2.4 aesDecryptBlocks :: Decrypt Data Blocks

SYNTAX

aesDecryptBlocks(Control, DataBuf, DataLen, Buffer)

 Control : (P) Control buffer (see section 1.5 above)

 DataBuf : (P) Binary data to decrypt

 DataLen : (I) Size of DataBuf buffer (must be multiple of 16 bytes)

 Buffer : (P) Decrypted data (size = ‘DataLen’ bytes)

REMARKS

The function aesDecryptBlocks decrypts the ‘DataLen’ bytes in ‘DataBuf’ into ‘Buffer’. ‘DataLen’ is the

length of both ‘DataBuf’ and ‘Buffer’. In particular, ‘DataLen’ must be a multiple of 16 bytes since AES

encrypts blocks of exactly 16 bytes.

Also see function aesDecryptBuffer.

EXAMPLE (C/C++)

char *DataBuf = ...previously encrypted data...

char Buffer[32];
Code = aesDecryptBlocks(NULL, DataBuf, 32, (char *)Buffer);

EXAMPLE (VB)

Dim DataBuf As String

Dim Control as String

Control = "*"

DataBuf = ...previously encrypted data...

Buffer = SPACE(32)

Code = aesDecryptBlocks(Control, DataBuf, 32, Buffer)

RETURNS

< 0 : Error. See error list.

> 0 : DataLen

 10

2.5 aesDecryptBuffer :: Decrypt Buffer

SYNTAX

aesDecryptBuffer(Control, InputBuf, BufSize, OutputBuf)

 Control : (P) Control buffer (see section 1.5 above)

 InputBuf : (P) Buffer of bytes to be decrypted.

 BufSize : (I) Number of bytes in above buffer.

 OutputBuf : (P) Buffer to write decrypted bytes into.

REMARKS

The function aesDecryptBuffer decrypts (previously encrypted) bytes in ‘InputBuf’ to ‘OutputBuf’,

which must be able to hold at least ‘BufSize’ bytes.

Note that the input buffer size ‘BufSize’ must be a multiple of 16. Also note that the input buffer

‘InputBuf’ is always assumed to be padded.

This function can decrypt data that was encrypted using the same mode (EBC or CBC) and padding (zero

or PKCS7) as when encrypted. However, only PKCS7 padding can be removed by this function. Other

types of padding, such as zeros, must be removed by the user.

EXAMPLE (C/C++)

char *Control = NULL;

char Buffer[256]; // adjust to be able to hold all decrypted bytes

// ‘Data’contains ‘Size’ bytes of encrypted data

Code = aesDecryptBuffer(Control, (char *)Data, Size, (char *)Buffer);

EXAMPLE (VB)

Dim Control As String

Dim Buffer As String

' Data contains Size bytes of encrypted data, and Buffer must be

' able to hold all decrypted bytes

Buffer = Space(256)

Code = aesDecryptBuffer(Control, Data, Size, Buffer)

RETURNS

< 0 : Error. See error list.

> 0 : Total # bytes decrypted.

 11

2.6 aesDecryptFile :: Decrypt File

SYNTAX

aesDecryptFile(Control, InputFile, OutputFile)

 Control : (P) Control buffer (see section 1.5 above)

 InputFile : (I) File (or path) name of file to be decrypted.

 OutputFile : (I) Output file (or path) name

REMARKS

The function aesDecryptFile decrypts the (previously encrypted) file ‘InputFile’ into ‘OutputFile’. The

two files must be distinct.

Padding is removed according to the second argument in aesAttach, and must be the same padding

method used when the file was encrypted.

EXAMPLE (C/C++)

char *Control = NULL;

char *InFile = "\\aes4c\\apps\\alpha.txt.aes";

char *OutFile = "\\aes4c\\apps\\alpha.txt";

Code = aesDecryptFile(Control, InFile, OutFile);

EXAMPLE (VB)

Dim Control As String

Dim InFile As String

Dim OutFile As String

Control = "*"

InFile = "\aes4vb\apps\alpha.txt.aes"

OutFile = "\aes4vb\apps\alpha.txt"

Code = aesDecryptFile(Control, InFile, OutFile)

RETURNS

< 0 : Error. See error list.

> 0 : Total # bytes read.

 12

2.7 aesEncodeBase64 :: Encode Base64

SYNTAX

aesEncodeBase64(DataBuf, DataLen, CodeBuf)

 DataBuf : (P) Data to base64 encode

 DataLen : (I) Size of DataBuf buffer

 CodeBuf : (P) Base64 encoded data

REMARKS

The function aesEncodeBase64 Base64 encodes binary data. The CodeBuf buffer must be at least 4 *

(CodeLen /3) bytes in size. Thus, for example, a 32 byte binary key requires a 44 byte text buffer.

Base64 encoding replaces groups of 3 binary bytes with 4 ASCII text bytes. Base64 encoding is a convenient

way to express a 32 byte binary encryption key.

Also see function aesDecodeBase64

EXAMPLE (C/C++)

char DataBuf[32]; //…assume 32 byte encryption key…

char CodeBuf[44];

Code = aesEncodeBase64((char *)DataBuf, 32, (char *)CodeBuf);

EXAMPLE (VB)

Dim DataBuf As String

Dim CodeBuf As String

DataBuf = … assume 32 byte encryption key…

CodeBuf = SPACE(44)

Code = aesEncodeBase64(DataBuf, 32, CodeBuf)

RETURNS

< 0 : Error. See error list.

> 0 : DataLen

 13

2.8 aesEncryptBlocks :: Encrypt Data Blocks

SYNTAX

aesEncryptBlocks(Control, Data, DataLen, Buffer)

 Control : (P) Control buffer (see section 1.5 above)

 DataBuf : (P) Binary data to encrypt

 DataLen : (I) Size of DataBuf buffer (must be multiple of 16 bytes)

 Buffer : (P) Encrypted data (size = ‘DataLen’ bytes)

REMARKS

The function aesEncryptBlocks encrypts the ‘DataLen’ bytes in ‘DataBuf’ into ‘Buffer’. ‘DataLen’ is the

length of both ‘DataBuf’ and ‘Buffer’. In particular, ‘DataLen’ must be a multiple of 16 bytes since AES

encrypts blocks of exactly 16 bytes.

EXAMPLE (C/C++)

char *DataBuf = "This test data is 32 characters!";

char Buffer[32];
Code = aesEncryptBlocks(NULL, DataBuf, 32, (char *)Buffer);

EXAMPLE (VB)

Dim DataBuf As String

Dim Control as String

Control = "*"

DataBuf = "This test data is 32 characters!"

Buffer = SPACE(32)

Code = aesEncryptBlocks(Control, DataBuf, 32, Buffer)

RETURNS

< 0 : Error. See error list.

> 0 : DataLen

 14

2.9 aesEncryptBuffer :: Encrypt Buffer

SYNTAX

aesEncryptBuffer(Control, InputBuf, BufSize, OutputBuf)

 Control : (P) Control buffer (see section 1.5 above)

 InputBuf : (P) Buffer of bytes to be decrypted.

 BufSize : (I) Number of bytes in above buffer.

 OutputBuf : (P) Buffer to write decrypted bytes into.

REMARKS

The function aesEncryptBuffer encrypts bytes in ‘InputBuf’ to ‘OutputBuf’, which must be able to hold

at least ‘BufSize’ plus 16 bytes.

Note that the input buffer size ‘BufSize’ does not have to be a multiple of 16.

EXAMPLE (C/C++)

char *Control = NULL;

char Buffer[256]; // buffer for encrypted data

// ‘Data’contains ‘Size’ bytes of data to be encrypted

// ‘Buffer’ must be able to hold ‘Size’ bytes plus 16

Code = aesEncryptBuffer(Control, (char *)Data, Size, (char *)Buffer);

EXAMPLE (VB)

Dim Control As String

Dim Buffer As String

' ‘Data’contains ‘Size’ bytes of data to be encrypted

' ‘Buffer’ must be able to hold ‘Size’ bytes plus 16

Buffer = Space(256)

Code = aesEncryptBuffer(Control, Data, Size, Buffer);

RETURNS

< 0 : Error. See error list.

> 0 : Total # bytes decrypted.

 15

2.10 aesEncryptFile:: Encrypt File

SYNTAX

aesEncryptFile(Control, InputFile, OutputFile)

 Control : (P) Control buffer (see Section 1.5 above)

 InputFile : (P) File (or path) name of file to be encrypted.

 OutputFile : (P) Output file (or path) name

REMARKS

The function aesEncryptFile encrypts the file ‘InputFile’ to the file ‘Output’.

Padding is done as specified by the second argument in aesAttach.

EXAMPLE (C/C++)

char *Control = NULL;

char *InFile = "\\aes4c\\apps\\alpha.txt";

char *OutFile = "\\aes4c\\apps\\alpha.txt.aes";

Code = aesEncryptFile(Control, InFile, OutFile);

EXAMPLE (VB)

Dim Control As String

Dim InFile As String

Dim OutFile As String

Control = "*"

InFile = "\aes4c\apps\alpha.txt"

OutFile = "\aes4c\apps\alpha.txt.aes"

Code = aesEncryptFile(Control, InFile, OutFile)

RETURNS

< 0 : Error. See error list.

> 0 : Total # bytes read.

 16

2.11 aesEncryptWrite :: Encrypt Buffer & Write File

SYNTAX

aesEncryptWrite(Control, Data, DataLen, OutputFile)

 Control : (P) Control buffer (see section 1.5 above)

 Data : (P) Data that is to be encrypted.

 DataLen : (I) Size of above data.

 OutputFile : (P) Output filename

REMARKS

The function aesEncryptWrite encrypts the data then writes the encrypted data to a file. This function is

equivalent to writing the data to a file then encrypting the file with aesEncryptFile.

Padding is done as specified by the second argument in aesAttach.

EXAMPLE (C/C++)

char *Data = "My secret";

char *File = "c:\\aes4c\\apps\\MySecret.bin";

Code = aesEncryptWrite(Control, Data, strlen(Data), File);

EXAMPLE (VB)

Dim Data As String

Dim File As String

Data = "My secret"

File = "c:\aes4vb\apps\MySecret.bin"

Code = aesEncryptWrite(Control, Data, Len(Data), File)

RETURNS

Returns # bytes written.

 17

2.12 aesErrorText :: Get Error Text

SYNTAX

aesErrorText(ErrCode, Buffer, BufLen)

 ErrCode : (I) Error code

 Buffer : (P) Buffer into which the error text is copied

 BufLen : (I) Length of above buffer.

REMARKS

The function aesErrorText copies the text associated with return code ‘ErrCode’ into ‘Buffer’. Call this

function if an AES functions returns a negative return code, which always indicates an error.

EXAMPLE (C/C++)

char Buffer[128];

// get error text associated with error ‘ErrCode’

Code = aesError(ErrCode, (char *)Buffer, 128);

EXAMPLE (VB)

Dim Buffer As String

Buffer = SPACE(128)

' get error text associated with error ‘ErrCode’

Code = aesError(ErrCode, Buffer, 128)

RETURNS

Returns # bytes copied to Buffer.

 18

2.13 aesGetInteger :: Get AES Integer Parameter

SYNTAX

aesGetInteger(Control, ParamName)

 Control : (P) Control buffer (see section 1.5 above)

 ParamName : (I) Parameter name

REMARKS

The function aesGetInteger functions returns the integer parameter corresponding to the passed

‘ParamName’.

 ParamName Returns

 AES_GET_CONTROL_VERSION Control buffer version

 AES_GET_CONTROL_SIZE Size of control block

 AES_GET_VERSION AES version (packed hex format)

 AES_GET_BUILD AES build number

EXAMPLE (C/C++)

int Version;

// get AES version number

Version = aesGetInteger(NULL, AES_GET_VERSION);

EXAMPLE (VB)

Dim Control As String

Dim Version As Integer

' get AES version number

Control = "*"

Version = aesGetInteger(Control, AES_GET_VERSION)

RETURNS

< 0 : Error. (-1 = "no such parameter").

> 0 : Requested integer parameter.

 19

2.14 aesGetString :: Get AES String Parameter

SYNTAX

aesGetString(Control, ParamName, Buffer, BufLen)

 Control : (P) Control buffer (see section 1.5 above)

 ParamName : (I) Parameter name

 Buffer : (P) Buffer into which the parameter string is copied

 BufLen : (I) Size of above buffer

REMARKS

The function aesGetString functions copies the string corresponding to the passed ‘ParamName’ to ‘Buffer’

which has size ‘BufLen’.

 ParamName Returns

 AES_GET_REGISTRATION Customer’s registration string

EXAMPLE (C/C++)

// get registration string

char RegString[128];

Code = aesGetString(NULL, AES_GET_REGISTRATION, (char *)RegString, 128)

EXAMPLE (VB)

' get registration string
Dim Control As String

Dim RegString As String

Control = "*"

RegString = SPACE(128)

Code = aesGetString(Control, AES_GET_REGISTRATION, RegString, 128)

RETURNS

< 0 : Error. See error list..

> 0 : # bytes copied to Buffer.

 20

2.15 aesHexToByte :: Convert hex characters to bytes

SYNTAX

aesHexToByte

 HexBuf : (P) Buffer containing hex characters

 HexLen : (I) Size of above buffer

 Buffer : (P) Output buffer

REMARKS

The function aesHexToByte converts the buffer ‘HexBuf’ containing the hexadecimal characters into their

binary equivalent. Note that every character in ‘HexBuf’ must be one of ‘0’,..,’9’, ‘a’,..,’f’, or ‘A’,..’F’.

This function is supplied as a convenience and because some computer languages cannot easily perform

this conversion.

EXAMPLE (C/C++)

char *HexBuffer = "21AC";

char ChrBuffer[2];

Code = aesHexToByte(HexBuffer, 4, ChrBuffer);

EXAMPLE (VB)

Dim HexBuffer As String
Dim ChrBuffer As String

HexBuffer = "21AC"

ChrBuffer = SPACE(2)

Code = aesHexToByte((char *)HexBuffer, 4, ChrBuffer)

RETURNS

< 0 : Error. See error list.

> 0 : HexLen

 21

2.16 aesInitAES :: Initialize AES for Encryption / Decryption

SYNTAX

aesInitAES(KeyBuffer, iVector, Mode, Direction, Control)

 KeyBuffer : (P) 256 bit (32 byte) encryption key buffer

 iVector : (P) 16 byte CBC initialization vector.

 Mode : (I) Encryption mode (AES_ECB_MODE or AES_CBC_MODE)

 Direction : (I) Encryption direction (AES_ENCRYPT or AES_DECRYPT)

 Control : (P) Control buffer (see section 1.5 above)

REMARKS

The function aesInitAES installs the 256 bit (32 byte) encryption key, the encryption mode

(AES_ECB_MODE or AES_CBC_MODE), and the encryption direction (AES_ENCRYPT or

AES_DECRYPT) in the encryption/decryption control buffer ‘Control’.

The AES control buffer contains the parameters necessary to perform encryption and decryption. Refer to

the Section 1.5 "AES Control Buffer.”

EXAMPLE (C/C++)

char KeyBuffer[AES_KEY_SIZE];

char iVector[AES_BLOCK_SIZE] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; //CBC

Code = aesInitAES((char *)KeyBuffer, (char *)iVector, AES_CBC_MODE,

 AES_ENCRYPT, NULL);

EXAMPLE (VB)

Dim KeyBuffer As String

Dim iVector As String

iVector = Chr(0) ' ECB modes doesn’t use iVector

aesInitAES(KeyBuffer, iVector, AES_ECB_MODE, AES_ENCRYPT, NULL)

RETURNS

< 0 : Error. See error list.

> 0 : Size of control buffer.

 22

2.17 aesMakeKeyPair :: Make Private/Public Key Pair

SYNTAX

aesMakeKeyPair(PublicKey, PrivateKey)

 PublicKey : (P) Buffer into which 128 byte public key is written

 PrivateKey : (P) Buffer into which 128 byte private key is written

REMARKS

The function aesMakeKeyPair creates a public/private pair of 128 byte keys to securely exchange AES

keys using the Diffie-Hellman algorithm.

Two users each call aesMakeKeyPair to create their own public/private key pairs. After the public keys

are exchanged between the two users, each used creates the shared key by calling aesMakeSharedKey.

Note that aesMakeKeyPair is very slow as it performs 1024 bit arithmetic. For this reason, the primary

purpose of Diffie-Hellman is the secure exchanges of AES encryption keys.

See the TestDH example program.

EXAMPLE (C/C++)

char PublicKey[128]; // public key

char PrivateKey[128]; // secret key

Code = aesMakeKeyPair((char *)PublicKey, (char *)PrivateKey);

EXAMPLE (VB)

Dim PublicKey As String

Dim PrivateKey As String

PublicKey = Space(128)

PrivateKey = Space(128)

Code = aesMakeKeyPair(PublicKey, PrivateKey)

RETURNS

Returns 1 (TRUE)

 23

2.18 aesMakeRandom :: Generate Random Bytes

SYNTAX

aesMakeRandom(Buffer, BufLen)

 Buffer : (P) Buffer into which random bytes are copied.

 BufLen : (I) Size of above buffer

REMARKS

The function aesMakeRandom fills ‘Buffer’ with ‘BufLen’random bytes. One use for this function is to

create a 32 byte (256 bit) session key for use in transmitting data in the open.

aesMakeRandom generates "pseudo random" values using a random number generator after being seeded

by the computer clock unless the seed is first specified by the user with the aesSetInteger function.

See aesSecureRandom function if cryptograhically secure pseudo-random numbers are required.

EXAMPLE (C/C++)

char Buffer[32];

Code = aesMakeRandom((char *)Buffer, 32);

EXAMPLE (VB)

Dim Buffer As String

Buffer = Space(32)

Code = aesMakeRandom(Buffer, 32)

RETURNS

Returns BufLen.

 24

2.19 aesMakeSharedKey :: Make Shared Key

SYNTAX

aesMakeSharedKey(PubicKey, PrivateKey, SharedKey, AES_Key)

 PublicKey : (P) Other user’s 128 byte public key

 PrivateKey : (P) Local user’s 128 byte private key.

 SharedKey : (P) Buffer into which 128 byte shared key is written

 AES_Key : (P) Buffer for 32 byte AES key (made from shared key)

REMARKS

The function aesMakeSharedKey creates the 128 byte shared Diffie-Hellman key and the 32-byte

shared AES key.

Two users each call aesMakeKeyPair to create their own public/private key pairs. After the public keys

are exchanged between the two users, each use creates the shared key by calling aesMakeSharedKey

using the other’s public key and their private key.

The 32 byte AES key is created by partitioning the 128 byte shared Diffie-Hellman key into 4 sections of

32 bytes then XOR'ing the 4 sections together.

Note that aesMakeSharedKey is very slow as it performs 1024 bit arithmetic. For this reason, the primary

purpose of Diffie-Hellman is the secure exchanges of AES encryption keys.

See the TestDH example program.

EXAMPLE (C/C++)

char OtherPublic[128]; // other user’s public key

char PrivateKey[128];

char SharedKey[128];

char AES_Key[32];

Code = aesMakeSharedKey((char *)OtherPublic, (char *)PrivateKey,

 (char *)SharedKey, (char *)AES_Key);

EXAMPLE (VB)

Dim OtherPublic As String ‘other user’s public key

Dim PrivateKey As String

Dim SharedKey As String

Dim AES_Key As String

SharedKey = Space(128)

AES_Key = Space(128)

Code = aesMakeSharedKey(OtherPublic, PrivateKey, SharedKey, AES_KEY)

RETURNS

Returns 1 (TRUE)

 25

2.20 aesMakeUserKey :: Make AES Encryption Key

SYNTAX

aesMakeUserKey(UserPhrase, KeyBuffer, Method)

 UserPhrase : (P) 8 to 43 character password phrase

 KeyBuffer : (P) 256 bit (32 byte) key buffer.

 Method : (I) Method

REMARKS

The function aesMakeUserKey creates a 32 byte encryption key in ‘KeyBuffer’ from the caller’s pass-

phrase string ‘UserPhrase’. Three methods are supported: (1) the "nibble method", (2) the SHA-256

method, and the mixed method. (AES_NIBBLE_METHOD , AES_SHA256_METHOD, and

AES_MIXED_NETHOD).

For maximum strength, a user pass phrase of 43 characters is recommended although a string as short as 8

characters can be used. As a practical matter, it is best to select an easily remembered pass phrase, as for

example "This is my personal pass phrase" or "George Washington was the first president".

Nibble Method

Each character in ‘UserPhrase’ must be one of the 64 characters ‘a’,..,’z’, ‘A’,...,’Z’, ‘0’,..,’9’, ‘_’, or

space. Since we need to create a 256-bit key, and since 2^6 = 64, then 256 / 6 = 42.667 characters are need

in order to create a 256 bit key.

SHA-256 Method

aesSha256Data is used to compute the 32-byte encryption key. See the Section 2.17, aesSha256Data, in

this manual.

Mixed Method

The mixed method consists of first applying the nibble method then the SHA 256 method.

EXAMPLE (C/C++)

char *UserPhrase = "This is my personal pass phrase";

char KeyBuffer[AES_KEY_SIZE];

Code = aesMakeUserKey((char *)UserPhrase, (char *)KeyBuffer,

 AES_NIBBLE_METHOD);

EXAMPLE (VB)

Dim UserPhrase As String

Dim KeyBuffer As String

UserPhrase = "This is my personal pass phrase"

KeyBuffer = SPACE(32)

Code = aesMakeUserKey(UserPhrase, KeyBuffer, AES_NIBBLE_METHOD)

RETURNS

< 0 : Error. See error list.

> 0 : Key size in bytes (32)

 26

2.21 aesPadBuffer :: Append Pad Bytes to Buffer

SYNTAX

aesPadBuffer(Control, Buffer, BufLen, PadCode)

 Control : (P) Control buffer (see section 1.5 above)

 Buffer : (P) Buffer to pad

 BufLen : (I) Length of above buffer

 PadCode : (I) Type of padding

REMARKS

The function aesPadBuffer appends bytes to ‘Buffer’ to make it into a length that is a multiple of 16

bytes. Note that ‘Buffer’ must be at least 15 bytes greater than ‘BufLen’ if not a multiple of 16.

If ‘BufLen’ is a multiple of 16, no padding is done. ‘PadCode’ must be one of: AES_PAD_ZERO,

AES_PAD_SPACE, AES_PAD_RANDOM, or AES_PAD_PKCS7.

Note that padding is done automatically when calling aesEncryptFile, aesDecryptFile, aesEncryptWrite,

and aesReadDecrypt, as determined by the second argument in aesAttach.

This function is supplied as a convenience because some computer languages cannot easily perform this

function.

EXAMPLE (C/C++)

char Buffer[16] = "some stuff"; // size must be multiple of 16 bytes

// pad 'Buffer' to 16 bytes

Code = aesPadBuffer(NULL, (char *)Buffer, strlen(Buffer), AES_PAD_RANDOM);

EXAMPLE (VB)

Dim Buffer As String

Buffer = "some stuff"

BufLen = LEN(Buffer)

Buffer = Buffer + SPACE(15)

Code = aesPadBuffer(NULL, Buffer, BufLen, AES_PAD_RANDOM)

RETURNS

Returns # bytes appended to make it into a multiple of 16.

 27

2.22 aesReadDecrypt :: Read File & Decrypt

SYNTAX

aesReadDecrypt (Control, InputFile, Buffer, BufLen)

 Control : (P) Control buffer (see section 1.5 above)

 InputFile : (P) Input filename

 Buffer : (P) Buffer for decrypted data.

 BufLen : (I) Size of above buffer.

REMARKS

The function aesReadDecrypt reads the encrypted file then decrypts it into ‘Buffer’. This function is

equivalent to reading a file encrypted by aesEncryptFile then decrypting it with aesDecryptBlocks.

EXAMPLE (C/C++)

char Buffer[256];

char *File = "c:\\aes4c\\apps\\MySecret.bin";

Code = aesReadDecrypt(Control, (char *)Buffer, 256, File);

EXAMPLE (VB)

Dim Buffer As String

Dim File As String

Buffer = Space(256)

File = "c:\aes4vb\apps\MySecret.bin"

Code = aesReadDecrypt(Control, Buffer, File, 256)

RETURNS

Returns # bytes read.

 28

2.23 aesRemovePad :: Remove (PKCS7) Padding

SYNTAX

aesRemovePad(DataPtr, DataLen)

 DataPtr : (P) Data buffer

 DataLen : (I) Number bytes in above buffer

REMARKS

The function aesRemovePad removes PKCS7 padding from the end of the ‘DataPtr’, which was

previously encrypted with PKCS7 padding. The pad bytes are replaced with null bytes (00 hex).

The number of pad bytes “removed” is returned, which will always be between 1 and 16.

EXAMPLE (C/C++)

// remove padding from decrypted string 'DataPtr'

Code = aesRemovePad(DataPtr, DataLen)

EXAMPLE (VB)

' remove padding from decrypted string 'DataPtr'

Code = aesRemovePad(DataPtr, DataLen)

RETURNS

< 0 : Error. See error list.

> 0 : # PKCS7 pad bytes removed.

 29

2.24 aesSaltPass :: Salt Password

SYNTAX

aesSaltPass(SaltSeed,NbrSaltChars,SaltString,PassInp,PassOut)

SaltSeed : (I) random number seed for salt char generation

NbrSaltChars : (I) # salt chars to create

SaltString : (P) out: salt characters

PassInp : (P) in: password or pass phrase to be salted

PassOut : (P) out: password after salting

REMARKS

The function aesSaltPass is used to concatenate random characters to a password yielding a more secure

password that would not be in any password lookup table that an adversary might use to attempt to guess

the password.

It is never a good idea to code passwords or pass phrases in your code or write them to disk. Instead, "salt"

the password or pass phrase (using aesSaltPass) then compute the SHA 256 hash digest (using

aesSha256Data) of the salted password or pass phrase before writing to disk. Then when the user enters his

password or pass phrase, the SHA 256 hash digest can be computed and compared to the stored SHA 256

hash digest to validate the user.

EXAMPLE (C/C++)

// salt the password (make 8 salt chars using seed 12345)

int SaltSeed = 12345;

char SaltChars[256];

char *Password = "mike";

char SaltPass[9]; // salt characters terminated by null

char PassOut[256]; // must be able to hold salted password

Code = aesSaltPass(SaltSeed, 8, (char *)SaltChars, Password, SaltPass);

EXAMPLE (VB)

' salt the password (make 3 salt chars using seed 12345)

Dim SaltSeed As Integer

Dim SaltChars As String

Dim PassInp As String

Dim SaltPass As String

SaltSeed = 12345

SaltChars = Space(16)

PassInp = "mike"

SaltOut = Space(256)

Code = aesSaltPass(SaltSeed, 3, SaltChars, PassInp, PassOut)

RETURNS

< 0 : Error. See error list.

> 0 : Size of salted (null terminated) password

 30

2.25 aesSecureRandom :: Cryptographically Secure Random Bytes

SYNTAX

aesSecureRandom(SecureCTX, Buffer, BufLen)

SecureCTX : (P) in: 2068 byte buffer containing the algorithm context

 OR to use internal AES space for context, pass

 NULL or string starting with asterick *.

Buffer : (P) in/out: buffer for seeding and receiving variates.

BufLen : (I) in: size of above buffer

REMARKS

The function aesSecureRandom function is used to generate cryptographically secure pseudo random

numbers.

Any buffer of 1024 bytes can be used as the seed, although it should obviously not be something easily

guessed. The seed can be hard-coded in your application, or the functions aesMakeRandom(),

aesMakeKey(), and aesXorBits() can be used to create the required 1024 byte seed.

To seed the random number generator, the 1024 byte seed is passed in Buffer and BufLen is set to -1.

EXAMPLE (C/C++)

// seed using 4-byte integer

char SecureCTX[2068];

char Buffer[1024];

Code = aesSetInteger(NULL, AES_SET_SEED, 1234567);

Code = aesMakeRandom((char *)Buffer, 1024);

Code = aesSecureRandom((char *)&SecureCTX[0], (char *)Buffer, -1);

// ready to generate random numbers by calling aesSecureRandom

EXAMPLE (VB)

' seed using 4-byte integer

Dim SecureCTX As String

Dim Buffer As String

SecureCTX = SPACE (2068)

Code = aesSetInteger(0, AES_SET_SEED, 1234567)

Code = aesMakeRandom(Buffer, 1024)

Code = aesSecureRandom(SecureCTX, Buffer, -1)

' ready to generate random numbers by calling aesSecureRandom

RETURNS

< 0 : Error. See error list.

> 0 : Bytes in Buffer.

 31

2.26 aesSetInteger :: Set Integer Parameter

SYNTAX

aesSetInteger(Control, ParamName, ParamValue)

Control : (P) Control buffer (see section 1.5 above)

ParamName : (I) Parameter Name

ParamValue: (I) Parameter Value

REMARKS

The function aesSetInteger is used to specify certain integer parameters. The Control variable is not used

in this version, but is reserved for future versions.

Param Name Param Value Description

AES_SET_SEED 32-bit integer 32-bit seed for random number generator (RNG)

 Lists of large primes can be found on the internet.

EXAMPLE (C/C++)

// specify seed for random number generator

unsigned int Seed = 32452843; // unsigned int < 4294967295

Code = aesSetInteger(NULL, AES_SET_SEED, Seed);

EXAMPLE (VB)

' specify seed for random number generator

Dim Seed As Integer (use LONG for VB 4/5/6)

Seed = 32452843 ' Seed < 4294967295

Code = aesSetInteger(Control, AES_SET_SEED, Seed)

RETURNS

< 0 : Error. See error list.

 32

2.27 aesSha256Data :: Compute SHA 256 Hash of Data

SYNTAX

aesSha256Data(Data, Bytes, Hash)

 Data : (P) Data to be hashed

 Bytes : (I) Number of bytes in Data buffer.

 Hash : (P) 32-byte buffer for hashed data

REMARKS

The aesSha256Data function computes the 256-bit (32-byte) SHA hash from the passed data buffer. The

data may be text (as in the example below) or binary.

SHA-256 was designed by the U. S. National Security Agency (NSA) and published in 2001 by the NIST

as a U.S. Federal Information Processing Standard (FIPS).

EXAMPLE (C/C++)

char *Data = "Hash me up";

unsigned char Hash[32];

Code = aesSha256(Data, strlen(Data), (char *)Hash);

EXAMPLE (VB)

Dim Data As String

Dim Bytes As Integer

Dim Hash As String

Data = "Hash me up"

Bytes = Len(Data)

Hash = Space(32)

Code = aesSha256(Data, Bytes, Hash)

RETURNS

Returns the size of the hash block, which is always 32 bytes.

 33

2.28 aesSha256File :: Compute SHA 256 Hash of File

SYNTAX

aesSha256File(Filename, Hash)

Filename : (P) File name containing data to be hashed

Hash : (P) 32-byte buffer for hashed data

REMARKS

The aesSha256File function computes the 256-bit (32-byte) SHA hash from the contents of the passed

file. The file data may be text or binary.

SHA-256 was designed by the U. S. National Security Agency (NSA) and published in 2001 by the NIST

as a U.S. Federal Information Processing Standard (FIPS).

EXAMPLE (C/C++)

char *Filename = "FileData.bin";

unsigned char Hash[32];

Code = aesSha256((char *)Filename, (char *)Hash);

EXAMPLE (VB)

Dim Filename As String

Dim Hash As String

Filename = "FileData.bin"

Hash = Space(32)

Code = aesSha256File(Filename, Hash)

RETURNS

Returns the size of the hash block, which is always 32 bytes.

 34

2.29 aesShredFile :: Shred File

SYNTAX

aesShredFile(Filename, Flag)

Filename : (P) File to be shred

Flag : (I) Pass 0 if file if not to be deleted

REMARKS

The aesShredFile function overwrites the selected file with zeros then, if Flag is non-zero, deletes the file.

If a file is deleted without first clearing it’s contents (such as writing zeros), it is possible for the contents

of the file to be recovered. Thus, the reason for this function

EXAMPLE (C/C++)

char *Filename = "FileData.bin";

Code = aesShredFile((char *)Filename, 1);

EXAMPLE (VB)

Dim Filename As String

Filename = "FileData.bin"

Code = aesShredFile(Filename, 1)

RETURNS

Returns the size of the shred file

 35

2.30aesSleep :: Sleep

SYNTAX

aesSleep(MilliSecs)

 MilliSecs : (I) Milliseconds to sleep.

REMARKS

The function aesSleep is provided for use with those programming languages that do not have a

convenient sleep function.

EXAMPLE (C/C++)

// sleep one second

aesSleep(1000);

EXAMPLE (VB)

' sleep one second

Code = aesSleep(1000)

RETURNS

< 0 : Error. See error list.

> 0 : Total # bytes read.

 36

2.31 aesVerifyControl :: Verify Integrity of ‘Control’

SYNTAX

aesVerifyControl(Control)

 Control : (P) Control buffer (see Section 1.5 above)

REMARKS

The AES control buffer contains the parameters necessary to perform encryption and decryption.

The function aesVerifyControl is used to verify the integrity of the encryption/decryption control buffer

‘Control’. aesVerifyControl should be called after calling aesInitAES.

This function is for debugging purposes and is not normally used. Refer to Section 1.5, "AES Control

Buffer.”

EXAMPLE (C/C++)

Code = aesVerifyControl(NULL)

EXAMPLE (VB)

Dim Control As String

Control = "*"

Code = aesVerifyControl(Control)

RETURNS

Returns the size of the control block.

 37

2.32 aesXorBits :: XOR Buffer

SYNTAX

aesXorBits(XorBuf, XorLen, InBuf, OutBuf, BufLen)

 XorBuf : (P) Buffer to XOR with ‘InBuf’

 XorLen : (I) # bytes in ‘XorBuf’

 InBuf : (P) Buffer that is XOR’ed with ‘XorBuf’

 OutBuf : (P) OutBuf = XorBuf XOR InBuf

 BufLen : (I) # bytes in ‘XorBuf’, ‘InBuf’, & ‘OutBuf’

REMARKS

The function aesXorBits “exclusive OR’s” the ‘BufLen’ bytes in ‘InBuf’ with the ‘XorLen’ bytes in

‘XorBuf’, placing the result in ‘OutBuf’. Both ‘InBuf’ and ‘OutBuf’ (which can be the same buffer) have

length ‘BufLen’. The ‘XorBuf’ buffer of length ‘XorLen’ may be of any size > 0.

This function is supplied as a convenience because some computer languages cannot easily perform this

function.

EXAMPLE (C/C++)

Code = aesXorBits(XorBuf, XorLen, InBuf, OutBuf, BufLen);

EXAMPLE (VB)

Code = aesXorBits(XorBuf, XorLen, InBuf, OutBuf, BufLen)

RETURNS

Returns BufLen.

 38

3 AES Error Code List

Negative return codes are errors, as follows:

AES_NOT_MULTIPLE -2 : block not multiple of 16 bytes

AES_BAD_KEY_DIR -3 : key direction is invalid

AES_BAD_KEY_DATA -4 : key data is invalid

AES_BAD_CIPHER_MODE -5 : invalid cipher mode

AES_BAD_CIPHER_STATE -6 : cipher not initialized

AES_BAD_BLOCK_LENGTH -7 : invalid block length

AES_NOT_INITIALIZED -8 : AES control block not initialized

AES_IS_CORRUPTED -9 : AES control block is corrupted

AES_INTERNAL_ERROR -10 : AES internal error

AES_BAD_PASS_LEN -11 : password is too short

AES_CANNOT_OPEN -12 : cannot open file (for read)

AES_CANNOT_CREATE -13 : cannot create file

AES_READ_ERROR -14 : read error

AES_WRITE_ERROR -15 : write error

AES_BAD_PAD_CHOICE -16 : not AES_PAD_ZERO, AES_PAD_RANDOM, AES_PAD_SPACE

AES_BAD_HEX_CHAR -17 : bad hex character

AES_UNEXPECTED_CHAR -18 : unexpected pass phrase character

AES_ATTACH_CALL -19 : aesAttach() not called

AES_NULL_POINTER -20 : Unexpected null pointer

AES_BAD_METHOD -21 : Bad method (expecting AES_NIBBLE_METHOD,

 AES_SHA256_METHOD, or AES_MIXED_METHOD)

AES_BUFFER_TOO_SMALL -22 : Buffer is too small

AES_BUFFER_TOO_BIG -23 : Buffer is too big

AES_PKCS7_ERROR -24 : PKCS7 padding error

AES_CANNOT_OPEN_WRITE-25 : Cannot open file (for write)

AES_CANNOT_CLOSE -26 : Cannot close file

AES_CANNOT_DELETE -27 : Cannot delete file

AES_ABORTED -201 : AES aborted by user.

AES_KEYCODE -202 : Invalid key code.

AES_EXPIRED -203 : Evaluation version has expired.

